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POD 4DVar
CO2 is one of the most important greenhouse gases (GHGs) in the earth’s atmosphere. Since the industrial
era, anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere, resulting in
climate warming since the 1950s and leading to an increased frequency of extreme weather and climate
events. In 2020, China committed to striving for carbon neutrality by 2060. This commitment and China’s
consequent actions will result in significant changes in global and regional anthropogenic carbon emis-
sions and therefore require timely, comprehensive, and objective monitoring and verification support
(MVS) systems. The MVS approach relies on the top-down assimilation and inversion of atmospheric
CO2 concentrations, as recommended by the Intergovernmental Panel on Climate Change (IPCC)
Inventory Guidelines in 2019. However, the regional high-resolution assimilation and inversion method
is still in its initial stage of development. Here, we have constructed an inverse system for carbon sources
and sinks at the kilometer level by coupling proper orthogonal decomposition (POD) with four-
dimensional variational (4DVar) data assimilation based on the weather research and forecasting–green-
house gas (WRF-GHG) model. Our China Carbon Monitoring and Verification Support at the Regional level
(CCMVS-R) system can continuously assimilate information on atmospheric CO2 and other related infor-
mation and realize the inversion of regional and local anthropogenic carbon emissions and natural ter-
restrial ecosystem carbon exchange. Atmospheric CO2 data were collected from six ground-based
monitoring sites in Shanxi Province, China to verify the inversion effect of regional anthropogenic carbon
emissions by setting ideal and real experiments using a two-layer nesting method (at 27 and 9 km). The
uncertainty of the simulated atmospheric CO2 decreased significantly, with a root-mean-square error of
CO2 concentration values between the ideal value and the simulated after assimilation was close to 0. The
total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were
approximately 28.6% (17%–38%) higher than the mean of five emission inventories using the bottom-
up method, showing that the top-down CCMVS-R system can obtain more comprehensive information
on anthropogenic carbon emissions.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction greenhouse gases (GHGs). Climate change, global warming, and
Climate change, which is currently being discussed on an inter-
national scale, refers mainly to climate warming due to increased
the anthropogenic greenhouse effect are of great concern at home
and abroad. The report by Working Group I of the Intergovernmen-
tal Panel on Climate Change (IPCC) known as the Fifth Assessment
Report clearly states that the increase in GHGs (including carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) and
changes in land use will cause a series of effects, including an
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y https://rda.ucar.edu/datasets/ds083.2/.
� https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/

MOD09A1.
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increase in average temperature, a change in extreme temperature,
increased frequency of catastrophic weather, an increase in precip-
itation at the latitude of 30�N, and a decrease in rainfall in the trop-
ics, which have been occurring since the 1970s [1]. In addition, the
melting of glaciers due to global warming has led to a rise in sea
level, with a global average sea level rise of 0.19 m between
1901 and 2010 and an average growth rate of 1.7 mm�a�1. CO2 is
the most important anthropogenic GHG in the earth’s atmosphere.
Due to the impact of human activities (e.g., fossil fuel consumption
and cement production), the concentration of atmospheric CO2 has
increased from (289.9 ± 3.3) parts per million (ppm) in 1900 to
(398.8 ± 7.3) ppm in 2010–2019—an increase of 38%, with rapid
growth occurring in the last 50 years [2,3]. According to the Paris
Agreement, in order to limit global warming to below 1.5 �C by
2100 [4], the IPCC’s Sixth Assessment Report (AR6) recommends sub-
stantial and sustained reductions in anthropogenic CO2 emissions.
To limit global warming to 1.5, 1.7, or 2.0 �C, the IPCC’s 6th Assess-
ment Panel Working Group I estimates remaining carbon budgets
of 140, 230, and 370 petagrams of carbon (PgC) from 1 January
2020, respectively. However, CO2 emissions from human activities
are still increasing rapidly, with emissions from human activities
such as fossil fuel use, cement production, and land-use change
reaching 10.30 PgC�a�1 from 2006 to 2015 [5,6]; moreover, anthro-
pogenic emissions of CO2 were (10.90 ± 0.90) PgC�a�1 from 2010 to
2019. The remaining carbon budget will be consumed within a few
decades based on current estimates of anthropogenic emissions of
approximately 10.00 PgC�a�1 [7]. These anthropogenic carbon
emissions are distributed among the three components of the
earth system, with 46% being trapped in the atmosphere ((5.10 ±
0.02) PgC�a�1), 23% absorbed by the oceans ((2.50 ± 0.60) PgC�a�1),
and 31% absorbed by vegetation in terrestrial ecosystems ((3.40 ±
0.90) PgC�a�1) [2].

In September 2020, the Chinese government announced that
‘‘China will increase its autonomous national contribution, adopt
more vigorous policies and measures, strive to peak CO2 emissions
by 2030, and achieve carbon neutrality by 2060” [8–10]. This
solemn commitment shows the world that China is determined
to follow a green, low-carbon, high-quality development path.
China’s commitment to achieving carbon neutrality by 2060 is
consistent with the Paris Agreement’s 2 �C targets for achieving
zero emissions [11]. The core of the IPCC’s emissions inventory
guidelines is the governance mechanism of monitoring, reporting,
and verification (MRV)—an essential element of establishing an
evaluation system for implementing policies and programs. One
of these critical elements is verifying each country’s carbon emis-
sions every five years, starting in 2023. The two main methods
for estimating anthropogenic carbon emissions are known as the
‘‘bottom-up” and ‘‘top-down” methods. For example, global and
national-scale CO2 emission data are estimated by the Carbon
Dioxide Information Analysis Center (CDIAC) under the US Depart-
ment of Energy (1751–2006). Global CO2 emission data are also
collected by the International Energy Agency (IEA), whose database
covers global CO2 emissions from fossil fuels in more than 140
countries and regions (1971–2005), disaggregated by industry
and fuel type.

However, the inventory survey method can generally be used to
estimate only relatively static carbon emissions (usually on an
annual scale). The statistical data on which this method is based
are often incomplete or even erroneous, and there are significant
differences and errors in the emission factors. Due to these limita-
tions and errors, the emission fluxes estimated via the inventory
survey method are subject to large uncertainties [2,6,7,12–16].
The availability of multisource CO2 concentration observations—
including high-precision ground-based observations and observa-
tions from the GHGs observing satellites (GOSAT [17] and
GOSAT-2 [18]), the orbiting carbon observatories (OCO-2 [19,20]
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and OCO-3 [21]), and TanSat [22,23]—provides data support for
studying global/regional carbon assimilation systems [24]. There-
fore, top-down anthropogenic carbon flux estimation methods
are increasingly favored by researchers [25–30]. CO2 satellite
observation assimilation will play an important role in global and
regional carbon cycle studies and anthropogenic CO2 accounting
[31]. The European Space Agency (ESA) plans to use the same
approach to estimate anthropogenic CO2 emissions and to support
a global inventory study in 2028 [32].

China has proposed reaching its carbon peak by 2030 and
becoming carbon neutral by 2060 [8–10]. However, there is an
urgent need to accurately calculate anthropogenic emissions from
different regions in order to implement emission-reduction mea-
sures and assess whether the actions taken are appropriate and
effective. To respond to the national carbon-neutral strategy, this
paper develops a regional high-precision carbon assimilation sys-
tem called the China Carbon Monitoring and Verification Support
at the Regional level (CCMVS-R). In future research, we will intro-
duce additional high-precision ground-based CO2 concentration
observation network data and multisource satellite observation
data, which are expected to invert anthropogenic carbon emissions
at the provincial/urban scale with high spatial and temporal reso-
lutions. The structure of this paper is as follows: Section 1 provides
an introduction; Section 2 introduces the materials and methods;
Section 3 gives an analysis of the CCMVS-R ideal experiment and
Shanxi inversion results; and Section 4 is the conclusion.

2. Materials and methods

2.1. Data information

2.1.1. Meteorological inputs
The boundary field weather-driven data used by the CCMVS-R

system include National Centers for Environmental Prediction
(NCEP) Final Operational Global (FNL) analysis data,y with a resolu-
tion of 1� � 1� and containing information on 26 standard isobars
(10–1000 hPa) in the troposphere and the surface layer. Global data
analysis is performed every 6 h at 00:00, 06:00, 12:00, and 18:00
Coordinated Universal Time (UTC).

2.1.2. Anthropogenic carbon flux data
Anthropogenic carbon flux data mainly include carbon emis-

sions due to fossil fuel combustion and fire carbon flux, where fos-
sil fuel combustion emissions are a direct human influence on the
global carbon cycle. The anthropogenic carbon emissions selected
for this paper are shown in Table 1 [6,7,12,33–36].

2.1.3. VPRM model-driven data
The Vegetation photosynthesis respiration model (VPRM) is a

carbon flux estimation model based on remote-sensing data. The
spatial information and meteorological field information (2 m tem-
perature and downward shortwave radiation data) within the tar-
get area required for driving the model are provided by the
mesoscale atmospheric transport model (weather research and
forecasting (WRF)) [37]; the surface cover data required for model
input are provided by high-precision, vegetation-type data
(SYNMAP with 1 km resolution); and the enhanced vegetation
index (EVI) and land surface water index (LSWI) required for model
input are extracted from high-resolution remote-sensing data
(MOD09A1)�. The EVI, LSWI, and other parameter data correspond
to the target area grid through the application of spatial interpola-
tion methods.

https://rda.ucar.edu/datasets/ds083.2/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09A1
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09A1


Table 1
Information on the CO2 emission inventories.

No. Emission inventory Refs.

1 Emissions database for global atmospheric research (EDGAR) [12,33]
2 Open-source data inventory for anthropogenic CO2 (ODIAC) [6,34]
3 Global carbon project (GCP) [7]
4 Global infrastructure emission database (GID) [35]
5 China high-resolution emission gridded data (CHRED) [36]

Table 2
CO2 concentration variables defined in registry.ghg.

Concentration variable
(ppm)

Variable description

CO2_ANT Changes in CO2 concentration from anthropogenic
emissions

CO2_BIO Changes in CO2 concentration from biogenic
activity

CO2_OCE Changes in CO2 concentration from ocean fluxes
CO2_BCK Atmospheric CO2 background concentration
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2.1.4. Initial and boundary CO2 concentrations
The initial and boundary conditions for each type of CO2 emis-

sion and concentration field (i.e., anthropogenic sources and back-
ground fields) are obtained from the global output product of the
CarbonTracker system [38,39]. The CarbonTracker system data
product has a spatial resolution of 1� � 1� in China, a 34-layer ver-
tical division, and a temporal resolution of 3 h. The CO2 concentra-
tion fields included in this product include CO2 total
concentrations, biogenic combustion sources, and fossil fuel source
concentrations.

2.1.5. CO2 concentration observation data
The observation data in this paper comprise pseudo-

observation data and actual observation data. Among these, the
pseudo-observations are the CO2 concentrations simulated by the
WRF-GHG model [40], based on the ideal anthropogenic carbon
emissions and then extracted as the observed values to participate
in the assimilation. The actual observation data are from six high-
precision ground stations in Shanxi Province (Table S1 in Appendix
A), which are used for the assimilation inversion and analysis of
anthropogenic carbon emissions in Shanxi. Strict quality control
of CO2 observations is required before they enter the assimilation
system. The current trace-gas analyzer is based on Picarro, which
can theoretically achieve an observation accuracy of 0.1 ppm using
the calibration of multiple known concentrations of a standard gas;
however, there are various problems in actual observations, such
as missing standard gas concentration offset, abnormal sample
gas offset, and inappropriate water vapor removal, which affect
the observation quality. Thus, strict and uniform data quality con-
trol is needed to ensure reliable and accurate observation data.
This study uses an integrated quality control, screening, and fitting
system to process CO2 observations from six ground-based stations
in Shanxi. Finally, we produced a global ground-based high-
precision CO2 concentration dataset with complete quality control
and uniform standards.

2.2. Introduction to the WRF-GHG model

The CCMVS-R was developed based on the WRF-GHG model
(V3.9.1), which is based on the mesoscale weather forecasting
model WRF and mainly simulates the GHGs of CO2, carbon monox-
ide (CO), and CH4. The WRF model was developed by the National
Center for Atmospheric Research (NCAR) in the 1990s. The
WRF-GHG model can simulate the exchange of GHGs between
the atmosphere and terrestrial ecosystems, taking into account
the effects of atmospheric dispersion and transport on GHGs, and
can simulate and predict the distribution of GHGs in time and
space. WRF-GHG was originally developed to simulate atmo-
spheric GHGs (CO2, CH4, and CO) in the Amazon Basin in the
Balanço Atmosférico Regional de Carbono na Amazônia (BARCA)
project. For CO2, it is a direct dynamic coupling of the WRF model
and the VPRM model, while the VPRM is mainly used to simulate
the high-resolution spatial and temporal distribution of natural
carbon flux. Structurally, for the CO2 module, WRF-GHG was
developed based on the WRF model with chemistry (WRF-Chem)
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by adding the corresponding input and output variables (ebio_gee,
ebio_res, e_co2, co2_ant, co2_bio, co2_oce, co2_bck, etc.) to the reg-
istry.ghg registry and adding module_ghg_fluxes.F and other GHG
modules.

The various source concentration variables CO2_ANT, CO2_BIO,
CO2_OCE, and CO2_BCK are shown in Table 2 and represent CO2

concentration variations from anthropogenic sources, CO2 concen-
tration variations from biological activities, CO2 concentration vari-
ations from ocean fluxes, and atmospheric background
concentration values, respectively. The CO2 flux source in question
can not only be obtained from an external file—that is, called off-
line (ext.)—but can also be calculated online in mode (int.). The
time step can be set in half-hourly, daily, or WRF time steps, all
of which can be controlled via the namelist.input file.

Due to space limitations, the CCMVS-R regional high-precision
carbon assimilation system is optimized for natural carbonflux sim-
ulation by means of the VPRM ecological diagnostic model, which
will be described in detail in other research results. The natural car-
bonflux is the result of the optimization; therefore, in this study, the
natural carbon flux is considered to have no error, and only the
anthropogenic carbon emissions are assimilated and inverted.
2.3. The CCMVS-R building process

The CCMVS-R was mainly developed using Fortran and Python
in order to realize multicore parallel computing. Many researchers
favor the Fortran language as a scientific computing language,
while Python is an object-oriented interpreted computer program-
ming language with powerful and rich computational libraries. The
CCMVS-R building process consists of four main parts.

(1) Monte Carlo methods are run to generate ensemble pertur-
bations, and then proper orthogonal decomposition (POD) and
four-dimensional variational (4DVar) partitioning are applied to
compute the eigenvalues and eigenvectors of the ensemble.

(2) The obtained basis vector (i.e., anthropogenic carbon emis-
sions) and the mean state vector replace the initial anthropogenic
carbon emissions of the WRF-GHG model, and the parallel pooling
task is submitted to the Linux system.

(3) A scripting program to dynamically listen to the ensemble
tasks is run. Once all tasks are completed, the simulation results
for each ensemble and its mean value are resolved, and the POD
4DVar method is applied to construct a cost function in conjunc-
tion with the CO2 concentration observations.

(4) The a posteriori anthropogenic carbon emission data
obtained by the cost function solution are used to update the
anthropogenic carbon emission input of the WRF-GHG model,
and the model reruns this assimilation window. The resulting
CO2 concentration product is the simulated value of the CO2 con-
centration after anthropogenic carbon emission inventory
optimization.

The regional carbon assimilation system runs in a cycle accord-
ing to the above operation until all assimilation is finished, which
is schematically shown in Fig. 1.
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2.4. Introduction of efficient assimilation methods for POD 4DVar

In this study, we applied POD to the 4DVar algorithm [41,42].
The CCMVS-R was constructed based on the WRF-GHG model,
which largely reduces the computer resources required for
assimilation inversion and improves the computational efficiency
and estimation accuracy with a spatial resolution up to the kilo-
meter level. POD 4DVar is a straightforward method that uses
the Monte Carlo method to generate a 4D sample ensemble sim-
ilar to the ensemble Kalman filtering method (EnKF), where the
distribution is Gaussian with a mean of 0 and 30% uncertainty.
Since the POD orthogonal basis has optimality in the least-
squares sense, the POD method is applied to extract the orthog-
onal basis from the forecast ensemble in four dimensions, which
can capture more information of the forecast ensemble and bet-
ter characterize the spatial structure and temporal evolution of
the 4D variables. This method does not require an integral
adjoint model and is straightforward in operation and
maintenance.

Since the traditional 4DVar data assimilation method requires
tangent and adjoint linear operators, which are very difficult to
obtain for nonlinear model operators, POD 4DVar can make the
implicit optimization problem explicit by capturing the spatiotem-
poral evolutionary characteristics of the data with a set of basis
vectors. This approach not only simplifies the data assimilation
process but also retains two significant advantages of traditional
4DVar data assimilation: ① The physical model provides a strong
dynamic constraint, and ② observations from multiple periods
can be introduced simultaneously in a single assimilation window.
The assimilation effect is pronounced when the POD 4DVar
method is used for the data assimilation of models with significant
initial field errors and forecasted model uncertainties. For conven-
tional 4DVar data assimilation, the cost function (Eq. (1)) is con-
structed from the difference between the simulated values of the
model and the observed values, and the a posteriori anthropogenic
Fig. 1. Schematic diagram of the CCMVS-R construction. AVE represents
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carbon emissions are obtained by deriving the cost function

(J x0
!� �

).

J x0
!� �

¼ x0
!� xb

!� �T
B�1 x0

!� xb
!� �

þ
XS

j¼1

½yj!� Hjðxj!Þ�TR�1
j ½yj!� Hjðxj!Þ�

ð1Þ

xj
!¼ Mt0!tj ðx0!Þ ð2Þ

where the superscript T represents the matrix transpose, xb
! is a

background value, j represents the CO2 concentration observation
time series, Hj represents the observation operator, the yj

! repre-
sents the observation at a series of times tj, j ¼ 1; . . . ; S , Mt0!tj rep-
resents the forecast model, and the matrices B and R represent the
flux background error and concentration observation error covari-
ance, respectively. x0

! represents the control variables at the initial
moment of the assimilation window. In the cost function, the con-
trol variable x0

! is connected with xj
! through the forward integra-

tion of Eq. (2). It is clear that the cost function on the gradient
value of x0

! is difficult to obtain. However, the POD 4DVar method
greatly simplifies its calculation. In the POD 4DVar assimilation
algorithm, assuming that there are S time series in the assimilation
window, N random perturbation fields are generated using the
Monte Carlo method, and each perturbation field is added to the ini-
tial background field at t ¼ t0 to produce N initial fields xn

!ðt0Þ, n = 1,
2, . . ., N. The state variables of all sets within the used assimilation

window ( Xn
�!

) are obtained by means of Eq. (3).

Xn

!
¼ xn

!
t0ð Þ; xn

!
t1ð Þ; . . . ; xn

!
tSð Þ

� �
;n ¼ 1;2; . . . ; N ð3Þ

The next point is how to obtain the appropriate basis vectors.
The average of the N set state vectors is represented as follows:
the average value of the ensemble; p: the number of POD modes.
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X
�
¼ 1

N

XN
n¼1

Xn
�! ð4Þ

dXn ¼ Xn

!
�X

�
; n ¼ 1; . . . ; N ð5Þ

In the construction of the matrix A M � Nð Þ ¼ ðdX1; . . . ; dXnÞ,
M ¼ Mg �Mv � ðSþ 1Þ, where Mg andMv denote the number of
model space lattice points and the number of model variables,
respectively (here, only anthropogenic carbon emissions are repre-
sented). To calculate the POD modes, it is necessary to solve the
eigenvalue problem.

ðAATÞM�MV ¼ kV ð6Þ
In practice, M >> N; therefore, to efficiently and conveniently

solve the problem, the problem is transformed into an N � N eigen-
value problem, as follows:

ATAV ¼ kV

AATAV ¼ AkV

AATðAVÞ ¼ kðAVÞ ð7Þ
This translates into the problem of finding the eigenvalues of an

N � N matrix, and the computational efficiency is greatly
improved, which can meet the need for efficient computation of
regional assimilation systems with large dimensional characteris-
tics and high spatial and temporal resolution.

T�Vn ¼ knVn; n ¼ 1;2; . . . ; N ð8Þ
where T� ¼ ðATAÞN�N , Vn is the nth column of eigenvector V, and kn
is the eigenvalue k of the nth row. The nonzero eigenvalues kn
(1 � n � N) are selected for the orthonormal, and the POD pattern
is given by /n ¼ AVnffiffiffiffi

kn
p (1 � n � N). In the 4D space, analysis variable

Xa

!
can be rewritten in POD, which is represented as follows:

Xa

!
¼ X

�
þ
Xp

n¼1

bn/n ð9Þ

where p is the number of POD modes, the size of which is deter-
mined according to the following equation:

p ¼ min p; I Pð Þ ¼
Pp

n¼1knPN
n¼1kn

: I Pð Þ � c

( )
ð10Þ

where 0 < c < 1 denotes the percentage of the total information cap-
tured by the reduced dimensional space Dp ¼ spanf/1; . . . ;/pg. To
capture most information of the POD group, c is allowed to take val-
ues of approximately 1. Reconstructing the cost function Eq. (1)

according to Eq. (9), the control variable b ¼ ðb1; b2; . . . ;bpÞT replaces
the state variable at the initial moment X0

�!
so that the control vari-

ables are treated explicitly in the cost function, and the tangent
operator and the adjoint mode are not needed to determine the
minimum cost function. The problem of finding the minimum of
the cost function is transformed into a general optimization algo-
rithm to find b. However, the problem still requires an iterative pro-
cess, and it is still computationally intensive to find b. This problem
is solved according to the following flow. First, the POD model
matrix is constructed as follows:

U ¼ ð/1;/2; . . . ;/pÞ ð11Þ

where /n ¼ ð/n t0ð Þ;/n t1ð Þ; . . . ;/n tSð ÞÞT;n ¼ 1;2; . . . ;p. The transfor-
mation in Eq. (11) is given by

U ¼ ðU0;U1; . . . ;USÞT ð12Þ
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whereUj ¼ /1 tj
� �

;/2 tj
� �

; . . . ;/p tj
� �� �

. Eq. (9) is rewritten as follows:

Xa

!
¼ X

�
þUb ð13Þ

Rewriting the cost function using Eq. (13),

J bð Þ ¼ ðx� t0ð Þ þU0b� Xb

!
Þ
T

B�1ðx� t0ð Þ þU0b� Xb

!
Þ

þ
XS

j¼1

½yj!� Hj x
�

tj
� �� HjUjb�

T
R�1

j ½yj!� Hj x
�

tj
� �� HjUjb� ð14Þ

where yj
!¼ ðyj1; . . . ; yjmj

Þ is the CO2 concentration observation vec-

tor, and mj is the size of yj
!. The N sets of observations can be gen-

erated by perturbing the observations using a Gaussian distribution
perturbation with an uncertainty based on the site observation
accuracy, which is represented as follows:

Yi;j ¼ yj
! þ ei; i ¼ 1; . . . ;N ð15Þ

where ei ¼ ðei;1; ei;2; . . . ; ei;mj
ÞT; the mean value of perturbation of the

N sets is 0, which is represented by the matrix as Ej ¼ ðe1; e2; . . . ; eNÞ;
and the observation error covariance matrix can be evaluated as
follows:

Rj ¼
EjE

T
j

N � 1
; j ¼ 1; . . . ; S ð16Þ

The background error covariance B is constructed in a similar
way to the observation error covariance R.

Since R�1
j is a symmetric matrix, the gradient of the cost func-

tion (rJ bð Þ) is easily obtained by a simple calculation:

rJ bð Þ ¼ U0ð ÞTB�1ðx� t0ð Þ � xb
! þU0bÞ þ

XS

j¼1

�½HjUj�TR�1
j

� ½yj
! �Hj x

�
tj
� �� HjUjb� ð17Þ

To find the minimum value of the cost function, it is necessary
to calculate rJ(b) = 0; that is,

ð U0ð ÞTB�1U0 þ
XS

j¼1

�½HjUj�TR�1
j ½HjUj�Þb

¼
XS

j¼1

½HjUj�TR�1
j yj

! �Hj x
�

tj
� �h i

� U0ð ÞTB�1ðx� t0ð Þ � xb
!Þ ð18Þ

After the above series of transformations, Eq. (18) can be
obtained directly without an iterative process, which greatly sim-
plifies the computation and improves the efficiency of the assimi-
lation inversion.

2.5. CCMVS-R experimental program settings

In this paper, the simulation effect of the system is verified by
two sets of experimental schemes. Scheme 1 verifies the system’s
validity and convergence; therefore, the observation data are also
assumed to be pseudo-observations. Scheme 2 is based on the
high-precision ground-based observation data from Shanxi
Province, and an assimilation inversion of the anthropogenic carbon
emissions in Shanxi in 2019 is performed. The two experimental
schemes maintain the same settings except for the different obser-
vation data and use two layers of regional nested simulations with
resolutions of 27 and 9 km, in which the numbers of grid points in
the x–y directions for the two domains are 64 � 56 and 64 � 91,
respectively. The core nested area is selected from Shanxi, a pro-
vince with large carbon emissions (Fig. 2), where the green circles
represent six CO2 concentration observation stations. The assimila-
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tion inversion is only performed for the 9 kmnested region,with the
first layer providing the boundary conditions for this region.

In this experiment, we set the assimilation window size to
eight days, the simulation time to nine days, and the spin-up to
one day to make the meteorological field simulation results as
stable as possible (Fig. 3). As a key parameter in the assimilation
system, the size of the assimilation window must be set according
to the actual conditions of the ground-based and satellite observa-
tions. The primary physical process parameterization schemes
used in the WRF-GHG simulations include rapid radiative transfer
model (RRTM) longwave radiation [43], Dudhia shortwave radia-
tion [44], Yonsei University (YSU) boundary layer parameterization
[45], the Noah land surface model (LSM) [46], and Kain–Fritsch
cumulus parameterization [47]. These physical parameterization
schemes have been verified by numerous experiments and have
good simulation effects.

In this paper, 80 ensemble members are used for assimilation
inversion. In theory, a sufficiently large number of samples can
cover more information on state variables, and the assimilation
effect should be better. However, considering the computational
and time costs, the ensemble size should be reasonably allocated
according to the computational resources. In addition, ten nodes
with approximately 300 cores are involved in the assimilation
inversion computation. The details of the Scheme 1 are outlined
below.

(1) Assuming that the raw data of the Emissions Database for
Global Atmospheric Research (EDGAR) are ideal carbon emissions,
the CO2 concentrations simulated based on this inventory are used
as pseudo-observations to participate in the assimilation of the
ideal experiment.
Fig. 2. Schematic diagram of the nested simulation area. The d01 repre

268
(2) An uncertainty of 500% is added to the original EDGAR
inventory, FFpri = FF + FF�rand, as the initial emission data to par-
ticipate in the assimilation (where the resulting negative values are
taken as absolute values), where FFpri is the a priori anthropogenic
carbon emissions, FF is the assumed ideal anthropogenic carbon
emissions, and rand is the random disturbance factor.

(3) The CO2 concentration and boundary field data are from the
CarbonTracker system (1� � 1�).

(4) The VPRMmode input data are fromMOD09A1 data (500 m,
8 d).

(5) The WRF meteorological boundary field data are from FNL
data (2019, 1� � 1�).

(6) There are six pseudo-observation stations whose locations
are at the six CO2 concentration monitoring stations in Shanxi
(Fig. 2). The red symbol marks the location of a hypothetical ideal
validation station not involved in assimilation (Fig. 2).

The Scheme 2 is consistent with the ideal scenario setup in
terms of meteorological driving data, boundary conditions, and ini-
tial conditions, but the observation data are from six high-
precision ground stations in Shanxi Province, and the 2018 EDGAR
emission inventory is used to provide the a priori anthropogenic
carbon emissions to participate in the assimilation.
3. Results and discussion

3.1. Evaluating assimilation effects based on ideal experiments

The ideal experiments designed in this paper are all conducted
in the model to examine whether the constructed CCMVS-R carbon
sents the first layer, and the d02 represents the inner nested layer.



Fig. 3. Schematic diagram of the assimilation system operation cycle.

y https://www.cnemc.cn/.
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assimilation system can assimilate well to invert anthropogenic
carbon emissions. Fig. 4(a) shows the assumed ideal anthropogenic
carbon emissions using the 2018 EDGAR emission inventory. It is
evident from the distribution that some regions, such as Taiyuan,
Linfen, Changzhi, and Datong, have higher emissions, while other
areas have lower emissions, which is closely related to the
distribution of industrial and residential areas in Shanxi. Fig. 4(b)
shows the distribution obtained by randomly assigning a 500%
uncertainty perturbation to each grid based on ideal anthropogenic
carbon emissions. From this, it can be seen that the whole distribu-
tion is significantly higher than the ideal anthropogenic carbon
emissions, which we take as a priori anthropogenic carbon emis-
sions for the analysis of the CCMVS-R assimilation effect. Fig. 4(c)
shows the distribution of anthropogenic carbon emissions after
assimilation. The spatial distribution tends to be relatively similar
to the assumed ideal anthropogenic carbon emissions, and some
high-value areas of anthropogenic carbon emissions before the
assimilation are corrected. For the statistical analysis of the corre-
sponding grid of ideal anthropogenic carbon emissions, a priori
anthropogenic carbon emissions, and a posteriori anthropogenic
carbon emissions, the correlation between a priori anthropogenic
carbon emissions and ideal anthropogenic carbon emissions
is 0.89 with a root-mean-square error (RMSE) of 4.89 � 104

mol�km2�h�1. The correlation between the assimilated and ideal
anthropogenic carbon emissions is improved to 0.94 with an RMSE
of 5.18 � 103 mol�km2�h�1. Although the correlation does not
improve much, with an increase of 5.5% relative to the a priori
anthropogenic carbon emissions, the RMSE decreases significantly,
with a decrease of 89.4% relative to the a priori anthropogenic car-
bon emissions and a noticeable assimilation effect.

Fig. 5(a) shows a cumulative histogram of anthropogenic carbon
emissions in Shanxi Province during one assimilation process; the
ideal carbon flux is 5.24 � 106 mol�h�1, the a priori carbon flux after
the perturbation is 1.82 � 107 mol�h�1, and the a posteriori anthro-
pogenic carbon emissions after the assimilation are 5.97 � 106

mol�h�1. The a priori anthropogenic carbon emissions are 3.47 times
the ideal anthropogenic carbon emissions, and the a posteriori
anthropogenic carbon emissions are 1.14 times the ideal anthro-
pogenic carbon emissions. Fig. 5(b) shows the difference between
the anthropogenic carbon emissions and the corresponding grid
points of the ideal anthropogenic carbon emissions before and after
assimilation. The black line shows the difference between the a priori
and ideal anthropogenic carbon emissions, while the red line is the
difference between the a posteriori anthropogenic carbon emissions
and ideal anthropogenic carbon emissions. It can be seen from the
figure that the difference between the grid points after assimilation
is mainly concentrated near the 0 axis line. The anthropogenic carbon
emissions after assimilation have very obviously improved.

Figs. 4 and 5 display the assimilation effect in terms of the spa-
tial distribution and emission statistics. In contrast, Fig. 6 analyzes
the assimilation effect in terms of the difference between the simu-
lated and pseudo-observed CO2 concentrations before and after
assimilation. The black line represents the pseudo-observed CO2

concentrations, the red line represents the simulated CO2 concen-
trations before assimilation, and the blue line represents the simu-
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lated CO2 concentrations after assimilation, where Figs. 6(a) and
(b) show the hourly average CO2 concentrations at the validation
station that did not participate in assimilation and at the Taiyuan
station. The simulated values of CO2 concentrations before and
after assimilation at validation station Site B—which did not partici-
pate in the assimilation—agree with the pseudo-observation data,
despite some deviations. Figs. 6(c) and (d) show the simulated
hourly CO2 concentrations in one assimilation process at the
Taiyuan station and at the validation station without assimilation,
which aligns with Figs. 6(a) and (b). The simulation effect is
improved after assimilation, the correlation between the CO2 con-
centration after assimilation and the ideal result at the two moni-
toring stations is close to 1, and the RMSE is close to 0. These
results indicate that the CCMVS-R can capture the daily variation
information of the stations well in the ideal experiment and is
expected to assimilate the inverse regional anthropogenic carbon
emissions with higher accuracy based on high-precision ground-
based observation data.

3.2. Inverse anthropogenic CO2 emissions at high resolution in Shanxi

Fig. 7 shows a comparison of 9 km a posteriori anthropogenic
carbon emissions and a priori anthropogenic carbon emissions in
Shanxi Province in 2019 by means of CCMVS-R inversion. This
comparison indicates that the bottom-up statistical method may
underestimate the emissions in this region. The overall distribution
of anthropogenic carbon emissions in Shanxi is stronger in the cen-
tral part and weaker in the eastern and western parts. In the cen-
tral region, anthropogenic carbon emissions are linearly clustered
in a north–south direction. Three emission centers with high inten-
sity are located at the junction of Shuozhou–Datong, the south side
of Taiyuan, and the junction of Linfen–Yuncheng, respectively.

The inversion results were compared with five sets of anthro-
pogenic carbon emission inventory products—namely, global
infrastructure emission database (GID), open-source data inven-
tory for anthropogenic CO2 (ODIAC), EDGAR, China high-
resolution emission gridded data (CHRED), and global carbon pro-
ject (GCP). The comparison results (Table 3) show that the statisti-
cal values of the a posteriori inventory in each city of Shanxi
Province are closer to those of CHRED. However, in general, the a
posteriori anthropogenic carbon emissions from the CCMVS-R
assimilation inversion are approximately 28.6% (17%–38%) higher
than those of the five inventory products, especially the emissions
of the ODIAC anthropogenic carbon emission inventory product,
which may be considerably underestimated.

Fig. 8 portrays a statistical histogram of the a posteriori anthro-
pogenic carbon emissions and five sets of emission inventory prod-
ucts for prefecture-level cities in Shanxi, which shows that the
region with the highest a posteriori anthropogenic carbon emis-
sions is the city of Linfen. Taking Linfen and Datong—the two major
carbon-emitting cities in Shanxi Province—as an example, the sta-
tistical analysis is based on the a posteriori emissions and the three
inventory products GCP, GID, and ODIAC in 2019. The results show
that the statistical value of the anthropogenic carbon emissions of
the GID data product for Linfen is greater than that for Datong,
which is consistent with the statistical results of the a posteriori
emissions; however, for the other two sets of inventories (GCP
and ODIAC), Datong has higher carbon emissions.

To verify the reasonableness of the a posterior anthropogenic
carbon emissions and analyze the pollution concentration of
CO2’s associated gas CO in the atmosphere, CO pollution concentra-
tion observations were obtained from the China National Environ-
mental Monitoring Centery, and the collected CO concentration
observations from 6 + 6 monitoring stations within Datong and

https://www.cnemc.cn/


Fig. 4. Distribution of anthropogenic carbon emissions and ideal anthropogenic carbon emissions before and after assimilation. (a) Ideal anthropogenic carbon emissions;
(b) a priori anthropogenic carbon emissions; (c) a posteriori anthropogenic carbon emissions.

Fig. 5. Comparison of anthropogenic carbon emissions and ideal anthropogenic carbon emissions before and after assimilation in Shanxi Province. (a) Statistical bar graph;
(b) difference line graph. ID: the number assigned to a grid point for anthropogenic emissions.
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Linfen in 2019 were statistically analyzed by city where the stations
are located, by month. The analysis was used to represent the
average observed concentrations in Datong and Linfen. Fig. 9(a)
shows the monthly average CO concentration observations in
Datong (black line) and Linfen (red line). Except for March, May,
and July, when those in Linfen are lower than those in Datong, the
CO concentration observations in Linfen are similar to or signifi-
cantly higher than those in Datong, especially in winter. Fig. 9(b)
shows the annual average observation of CO concentrations in
Datong and Linfen. Those in Linfen (red bar) are approximately
0.16 mg�m�3 higher than those in Datong (black bar), and the area
of Linfen is approximately 1.43 times larger than that of Datong.
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These findings verify that the a posteriori anthropogenic carbon
emissions in Linfen are higher than those in Datong, which is reason-
able. ODIAC and GCP are inventory products with a time lag that use
bottom-up statistical methods to determine the emission factors—
methods that vary greatly and have large errors [48,49]. Thus, the
obtained results may have a significant bias.

Fig. 10 shows scatter plots of the simulated CO2 concentration
of the CCMVS-R system before and after the assimilation of anthro-
pogenic carbon emissions from 1 February to 30 April 2019 at the
Datong and Taiyuan monitoring stations in Shanxi, compared with
the daily average (24 h) of the observed values. The horizontal axis
represents the observed values, while the vertical axis represents



Fig. 6. Comparison analysis of simulated and pseudo-observed CO2 concentrations before and after assimilation: (a, b) show the hourly average CO2 concentrations of
(a) Taiyuan and (b) Site B, while (c) and (d) show the simulated hourly CO2 concentrations in one assimilation process of (c) Taiyuan and (d) Site B. Obs represents the pseudo-
observed CO2 concentrations, Org represents the simulated CO2 concentrations before assimilation, and Opt represents the simulated CO2 concentrations after assimilation.

Fig. 7. Comparative analysis of anthropogenic carbon emissions (9 km) in Shanxi Province before and after assimilation. (a) A priori anthropogenic carbon emissions; (b) a
posteriori anthropogenic emissions; and (c) differences between a priori and a posteriori anthropogenic carbon emissions.
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the simulated values before and after the assimilation. The correla-
tion coefficients between the simulated and observed CO2 concen-
trations after assimilation by the CCMVS-R system at the Datong
and Taiyuan monitoring stations are as high as 0.80 and 0.83,
respectively, with mean deviations of �0.25 and 1.01 ppm. Com-
pared with the correlation coefficients of 0.60 and 0.76 and mean
deviations of �5.92 and �11.1 ppm at the Datong and Taiyuan
monitoring stations before assimilation, there is a significant
improvement. The simulation effect before the assimilation is
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similar to that reported in other studies, such as in the work of
Diao et al. [50]. In their study using the WRF-GHG model without
the assimilation of atmospheric CO2 data, Diao et al. obtained a
correlation coefficient of approximately 0.64 and an average devi-
ation of approximately 6.87 ppm compared with the observed val-
ues. Those results showed that the emissions were closer to the
actual emissions after the optimization of anthropogenic carbon
emissions. The results provided in Fig. 10 show that the deviation
between the system-simulated values and the observed values is



Table 3
Comparison analysis of the after-assimilation inventory and five inventory products.

City/Province GCP ODIAC EDGAR CHRED GID

Datong 0.90 1.07 0.84 0.86 0.68
Taiyuan 0.87 0.77 0.70 1.04 0.78
Xinzhou 1.20 1.14 1.14 1.05 1.11
Jinzhong 0.69 0.45 0.65 0.63 0.65
Jincheng 1.72 1.07 1.43 0.80 1.58
Shuozhou 0.40 1.08 0.79 0.95 0.85
Yuncheng 0.60 0.39 0.56 0.79 0.63
Changji 1.48 0.80 1.10 0.75 0.89
Yangquan 0.58 0.71 0.86 0.82 0.58
Linfen 0.24 0.19 0.25 0.80 0.46
Lvliang 0.82 1.30 1.15 0.75 2.20
Shanxi 0.70 0.62 0.67 0.83 0.75
Mean 0.38 0.31 0.29 0.18 0.39

Value: inventory products divided by the post-assimilation inventory. Mean: AVERAGE(ABS(Value-1)).

Fig. 8. Comparison analysis of a posteriori anthropogenic carbon emissions and
inventory product statistics of prefecture-level cities in Shanxi Province.
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larger for some dates (especially within the purple rectangle),
which is strongly related to the system deviation, the observation
error, and the difficulty of capturing small-scale anthropogenic car-
bon emission events. However, in general, the system-simulated
values after the assimilation can capture well the daily averaged
variation in CO2 concentration information.

Fig. 11 shows the daily average time series of the CCMVS-R sys-
tem’s simulated values and station observations from 1 February
to 30 April 2019 for the Datong and Taiyuan monitoring stations,
with the horizontal axis representing the date and the vertical axis
representing the CO2 concentration values (ppm) of the assimilated
Fig. 9. Comparative analysis of CO concentration observations at the Datong and Linfen
observations in 2019; (b) annual average of CO concentration observations.
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CCMVS-R system’s simulated values (red line) versus the observed
values (black line). The line graph in Fig. 11 shows that the
CCMVS-R system’s simulated values can well capture the informa-
tion on the average daily changes in CO2 concentration. However,
the simulation effect of the Taiyuan monitoring station is inferior
to that of the Datong monitoring station—especially the deviation
of the system-simulated values from the observed values in the
dates marked by the purple rectangle boxes in Fig. 11. This deviation
may be due to the following reasons:① The Taiyuanmonitoring sta-
tion is located in an area with intensive emissions (Fig. 7), which has
a significant impact on the observations; in addition, the observed
data are influenced by anthropogenic emissions, which can cause
the observation results to fluctuate greatly within a day. After aver-
aging, there are significant differences between the model’s simu-
lated values and observations and those at the Datong monitoring
station. ② The surface is strongly mixed by turbulence after sunrise
due to solar radiation, and vegetation photosynthesis is simultane-
ously enhanced; this results in the concentration of CO2 in the
near-surface atmosphere decreasing continuously and reaching
the lowest value at approximately 15:00. With the subsequent con-
tinuous weakening of photosynthesis and atmospheric turbulence,
the concentration of CO2 in the near-surface atmosphere increases
gradually. At night, the atmospheric boundary layer tends to stabi-
lize; CO2 accumulates in the atmospheric boundary layer, and its
concentration increases continuously and reaches the daily maxi-
mum before sunrise. These meteorological factors directly affect
the atmospheric CO2 concentration. Therefore, the simulation accu-
racy of WRF-GHG on meteorological factors (including temperature
and downward shortwave radiation, etc.) affects the simulation
air quality monitoring stations in Shanxi. (a) Monthly average of CO concentration



Fig. 10. Comparison analysis of simulated and observed CO2 concentrations in the CCMVS-R system. (a) Datong monitoring station; (b) Taiyuan monitoring station. Black
markers represent the simulated values before assimilation, and red markers represent the simulated values after assimilation.

Fig. 11. Analysis of the daily variation in the simulated (Sim) and observed (Obs) values of the CCMVS-R system (black line represents observed values and red line represents
simulated values). (a) Datong monitoring station; (b) Taiyuan monitoring station.
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effect of atmospheric CO2 concentration to a certain extent, which is
the reason for the large deviation between the simulated and
observed values during some periods.

3.3. Advantages of our CCMVS-R system

The good performance of the CCMVS-R system stems from its
two main advantages: ① The CCMVS-R was developed based on
the WRF model, and the inverse anthropogenic carbon emissions
and CO2 concentration data are more realistic with the combina-
tion of atmospherically driven data and a model parameterization
scheme. This is a significant improvement over the anthropogenic
carbon emissions obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and GOSAT data using model recur-
sion by Guo et al. [51]. Guo et al.’s method lacked consideration
of atmospheric transmission models, resulting in a lack of further
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limitations from meteorological factors, and hence had consider-
able uncertainty. ② The CCMVS-R is based on the 4DVar assimila-
tion inversion method of POD to build the assimilation system,
which essentially reduces the computer resources required for
assimilation inversion while improving the computational effi-
ciency and estimation accuracy. Our approach solves the critical
technical issue to a certain level of high spatial and temporal reso-
lution and huge dimensionality of the regional carbon assimilation
system, operational cost, and computational efficiency limitation
[49,52,53].

4. Conclusions

Based on theWRF-GHG regional model, we used the POD 4DVar
method to construct a regional high-precision carbon assimilation
system, CCMVS-R. The system realizes the assimilation inversion of
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anthropogenic carbon emissions at the kilometer level. It provides
an effective means of accurately estimating anthropogenic carbon
emissions at the regional and local scales. Two nested layers were
designed with the resolutions of the outer and inner regions set at
27 and 9 km, respectively, to verify the effectiveness of the CCMVS-
R system. The core nested area was within Shanxi Province, which
is associated with large carbon emissions.

Two schemes were also designed for verification using six
ground-based sites with high-precision CO2 monitoring from
Shanxi. Scheme 1 used simulated values from theWRF-GHGmodel
extracted from six ground-observation stations as pseudo-
observation data for assimilation inversion. In comparison,
Scheme 2 used the information from six high-precision ground-
observation stations for assimilation inversion, while the other set-
tings remained the same. The simulation results of the ideal exper-
iment showed that ① the anthropogenic carbon emissions after
assimilation converged well to the assumed ideal carbon flux, with
significant correction of some high-value regions of the a priori car-
bon flux. The correlation between anthropogenic carbon emissions
and the ideal carbon flux before and after CCMVS-R assimilation
improved from 0.89 before assimilation to 0.94 after assimilation,
and the RMSE decreased from 4.89 � 104 mol�km2�h�1 before
assimilation to 5.18 � 103 mol�km2�h�1 after assimilation—a
decrease of 89.4%. This experiment illustrates the effective conver-
gence of the CCMVS-R system. ② The results of the anthropogenic
carbon emissions after assimilation were used as input to the
CCMVS-R system. The simulation ability of CCMVS-R on CO2 con-
centration was greatly improved. In this experiment, the pseudo-
observations simulated by the Taiyuan monitoring station, which
participates in the assimilation, and Site B, a hypothetical observa-
tion that does not participate in the assimilation, were selected to
verify the simulation ability of the CCMVS-R on CO2 concentration
before and after the assimilation. The experimental results showed
that the simulation effect was significantly improved after assimi-
lation. The correlation between the CO2 concentration after assimi-
lation and the ideal value was close to 1, and the RMSE between
them was close to 0.

Scheme 2 assimilated six high-precision ground station obser-
vations in Shanxi Province to obtain inverse anthropogenic carbon
emissions in 2019. The spatial distribution of the a posteriori
anthropogenic carbon emissions was reasonable. Anthropogenic
carbon emissions increased in most cities in Shanxi, particularly
in Linfen, showing that the bottom-up emission inventory for this
city may be underestimated. The results of the a posteriori anthro-
pogenic carbon emission statistics were compared with the mean
of five anthropogenic carbon emission inventory products (GID,
ODIAC, EDGAR, CHRED, and GCP), showing that the a posteriori
anthropogenic carbon emissions from CCMVS-R assimilation
inversion were approximately 28.6% (17%–38%) higher than those
of the five inventory products, especially for the ODIAC inventory
products, which may be more underestimated than the other
inventories due to the time lag and the error of the bottom-up sta-
tistical method.

In addition, the relationshipbetween the simulatedandobserved
CO2 concentrations after assimilation at the Datong and Taiyuan
monitoring stations from1 February to 30 April 2019was compared
and analyzed. The results showed that the CCMVS-R has sound
simulation effects, with the correlation coefficients between the
simulated and observed CO2 concentrations after assimilation being
as high as 0.80 and 0.83, with mean deviations of �0.25 and
1.01 ppm, respectively. Their correlation coefficients and mean
deviationswere significantly improved comparedwith those before
the assimilation at the Datong and Taiyuanmonitoring stations. The
simulated values of the system after assimilation were able to
capture the information on the average daily variation in CO2

concentration well. The inversion results show that the CCMVS-R
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regional high-precision carbon assimilation system has good appli-
cation prospects.

The quantity and quality of observational data limited the
development of the regional carbon assimilation system. In future
studies, multisource CO2 concentration observational data (i.e.,
ground-based observations, OCO-2/OCO-3, GOSAT/GOSAT-2,
TanSat, etc.) will be introduced to the CCMVS-R, and the compan-
ion gas CO of CO2 will be introduced into the regional atmospheric
CO2 assimilation inversion system to compensate for the low
inversion accuracy in regions without sufficient observational data.
This will potentially improve the inversion accuracy of the regional
carbon fluxes further.
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