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a b s t r a c t

Acute aortic dissection is one of the most life-threatening cardiovascular diseases, with a high mortality
rate. Its prevalence ranges from 0.2% to 0.8% in humans, resulting in a significant number of deaths due to
being missed in manual examinations. More importantly, the aortic diameter—a critical indicator for sur-
gical selection—significantly influences the outcomes of surgeries post-diagnosis. Therefore, it is an
urgent yet challenging mission to develop an automatic aortic dissection diagnostic system that can
recognize and classify the aortic dissection type and measure the aortic diameter. This paper offers a
dual-functional deep learning system called aortic dissections diagnosis-aiding system (DDAsys) that
enables both accurate classification of aortic dissection and precise diameter measurement of the aorta.
To this end, we created a dataset containing 61 190 computed tomography angiography (CTA) images
from 279 patients from the Division of Cardiovascular Surgery at Tongji Hospital, Wuhan, China. The
dataset provides a slice-level summary of difficult-to-identify features, which helps to improve the accu-
racy of both recognition and classification. Our system achieves a recognition F1 score of 0.984, an average
classification F1 score of 0.935, and the respective measurement precisions for ascending and descending
aortic diameters are 0.994 mm and 0.767 mm root mean square error (RMSE). The high consistency
(88.6%) between the recommended surgical treatments and the actual corresponding surgeries verifies
the capability of our system to aid clinicians in developing a more prompt, precise, and consistent
treatment strategy.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aortic dissection (AD) is a life-threatening disease [1,2] of the
aorta with three layers [3]. Rupture of the intima layer leads to
infiltration of blood into the middle layer, and AD occurs [4].
Immediately after symptoms begin, the mortality rate of untreated
patients with acute aortic dissection (AAD) increases by 1%–2% per
hour [5]. Hence, rapid and precise diagnosis is essential for reduc-
ing preoperative time. Successful aorta diameter measurement can
be used to prescribe a surgical strategy [6], assisting physicians in
making timely and accurate treatment decisions. Several attempts
have been made to use machine intelligence to diagnose ADs,
focusing on identifying ADs or measuring diameters. Unfortu-
nately, due to the low incidence rate of ADs, at approximately
3–35 cases per 100 000 inhabitants per year [7], there is still a lack
of publicly available annotated data. Therefore, it has become an
urgently needed mission to design a niche artificial intelligence
(AI)-based combination method that can provide complete and
accurate surgical recommendations.

Computed tomography angiography (CTA) is an effective
method for the identification of ADs [8]. CTA-based machine learn-
ing ADs diagnosis has thus been the subject of extensive research
over the past few years, with the aim of providing more accurate
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results [9]. Most of these studies have investigated the segmenta-
tion of true and false lumen of specific types of AAD [10], while
other researchers have focused on the locating of the aorta [11]
and the extraction of the central line [12]. These works have
demonstrated the effectiveness of machine learning in terms of
extracting aortic contours, paving the way from AI theory and
methods to their application in the detection and classification of
ADs. Pepe et al. [13] focused on achieving the robust extraction
of aortic cross-sections near landmarks using a convolutional neu-
ral network (CNN) with DropoutBlock. They also noted that the
inter-operator consistency bias in aortic diameter measurements
made by different human operators can be up to 5.33 mm, which
provides a reference for future researchers in the development of
machine measurement algorithms. Unfortunately, the accuracy of
the associated diameter measurements has not yet been specified.

In recent years, tremendous development has been achieved in
research on the automatic identification of ADs. In a pioneering
work, Zhao et al. [2] combined morphological constraints with a
deep encoding network to achieve efficient and accurate segmen-
tation of aortas. Hahn et al. [14] developed a five-step segmenta-
tion pipeline based on TernausNet [15] to achieve the
segmentation of aortas as well as that of the true and false lumen
of a specific type of dissection. Chen et al. [16] designed a two-
stage deep network consisting of three dense and deconvolution
blocks to segment true and false lumen. Furthermore, they pro-
posed an aortic centerline straightening method to improve the
accuracy of the segmentation of aorta, thus facilitating subsequent
aorta interior feature-extracting algorithms. To achieve automatic
recognition of ADs, other scholars [17–20] have performed abnor-
mal detection at the slice level, thereby synthesizing all slices’
information to yield a patient-level diagnosis. However, these
studies were mostly conducted on small datasets (only 10–20
cases), and more general versions are still ongoing.

Promisingly, Yellapragada et al. [21] designed a CNN to directly
diagnose acute aortic syndrome, which includes three kinds of
lesions—penetrating aortic ulcer, intramural hematoma, and
ADs—at the patient level. Xiong et al. [22] proposed a cascaded
multi-task generative framework to detect ADs using non-
contrast-enhanced computed tomography with an F1 score of
0.847, which is still far from ready for practical application. To
date, it remains challenging for most existing relevant models to
determine the types of detected ADs.

To address this issue, the present study develops a two-stage
segmentation network with dilation blocks to construct a
diagnosis-aiding system for multicategory ADs. The system is
trained on our established dataset, composed of 61 190 images
gathered from 279 patients, as shown in Fig. 1. We have named
the system the ‘‘aortic dissections diagnosis-aiding system
(DDAsys)”. Considering that some patient cases do not present
with an obvious true or false lumen, our proposed DDAsys directly
segments the intimal flap, which is the most distinctive feature for
diagnosing ADs. By training the model on low-quality images, we
have achieved the high-precision recognition and classification of
ADs according to potential interferences-based DeBakey classifica-
tion, which categorizes ADs into three types according to their
specific ranges (Fig. 1). In addition, the proposed DDAsys can mea-
sure the aortic diameters and thereby assist the choice of both arti-
ficial blood vessels and coated stent grafts [23].

Finally, a surgical method is suggested; the possible recommen-
dations are ascending aortic/arch surgery, thoracic endovascular
aortic repair (TEVAR) [24], or their combination. Moreover, the
measurement of the patient’s aortic diameter can provide a basis
for the selection of artificial blood vessels and coated stent grafts.
This system is expected to pave the way from the deep learning-
based CTA image feature recognition method to real applications
of AI-aided AD diagnosis.
84
In brief, the main contributions of this study are three-fold,
including:① providing a dataset consisting of 61 190 images gath-
ered from 279 patients and thereby generating six types of inter-
ference features, in order to substantially reduce the number of
false positives; ② developing a high-accuracy dual-functional sys-
tem for ADs diagnosis at the patient and slice level; and ③ achiev-
ing a high rate (88.6%) of consistency when comparing the
recommended surgery methods of the DDAsys system with the
actual methods used.
2. The method of ADs diagnosis

2.1. Data collection and annotation

The self-established ADs dataset contains the retrospectively
anonymized data of adult patients undergoing medical examina-
tion at the Division of Cardiovascular Surgery, Tongji Hospital,
Tongji Medical College, Huazhong University of Science and Tech-
nology (HUST), Wuhan, Hubei, China, from 16 January 2014 to 24
December 2020.

The CTA volumes were labeled and categorized into four
classes: normal, type I, type II, and type III. Their iconographies
are shown in Appendix A Fig. S1, and age and gender information
is recorded in Appendix A Table S1. The annotation procedure con-
sisted of two steps:

Step 1: The aortas in the training, validation, and testing scans
were pixel-marked by an experienced physician from the Division
of Cardiovascular Surgery of Tongji Hospital using the medical
image processing software 3D Slicer 4.11 (National Institutes of
Health, USA）[25].

Step 2: All the CTA volumes were interpreted by the physician
according to DeBakey’s classification. For the case used to verify
the accuracy of the diameter measurement, it was necessary for
the physician to manually measure the diameters of the aortas at
intervals of every five slices for the selected sections.
2.2. Overview of the AI system

Two sequential CNNs were used to construct a two-stage net-
work framework for the segmentation of the aorta and intimal flap
in CTA scans. The measurement of the aortic diameter was imple-
mented in the segmentation of the aorta, and the speckle-reducing
anisotropic diffusion (SRAD) [26,27] algorithm was adopted to
denoise the images; the resolution of the images was uniformly
resized to 256 � 256 to match the input layer of the first CNN. Pre-
processed images are fed into the first CNN to segment the aorta,
whose outputs are converted to 256 � 256 images as well and then
fed into the second CNN to produce the segmentation of the inti-
mal flaps. The outputs of the first network can be divided into three
cases, corresponding to different segments of the aorta, as shown
in Fig. 2. According to the number and shape of the detected areas,
DDAsys can concisely and efficiently determine which segment the
current output image belongs to.

To reduce the errors caused by segmentation inaccuracy (e.g.,
getting two aortic regions in a segment where only a descending
aorta exists), we use a sliding window with a size of five slices to
screen out the junctions of the aorta’s different segments, thereby
dividing the whole CTA volume into three segments. Each slice is
classified into one of these three segments according to the num-
ber and shape of the aortic regions detected within the slice. Once
a slice’s category does not fit the segment it belongs to, the slice
will be discarded. For each CTA volume, we calculate the frequency
of dissections in both ascending and descending aortas, respec-
tively, and thereby conduct the subsequent diagnosis. An overview
of the DDAsys method is shown in Fig. 2.



Fig. 1. Sketch map of the datasets. The distribution of each AD category: Two datasets are used for the segmentation of aorta and intimal flap, respectively. Data enhancement
is conducted in both datasets (contrast adjustment is used in aorta segmentation, whereas both flip and rotation are conducted in intimal flap segmentation).
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Filtered images are input to the second-stage network for the
segmentation of intimal flaps. Slices in which intimal flaps are
detected are recorded; finally, a classification score is calculated
via a sigmoid function.
2.2.1. Two stage-CNN architecture
As shown in Fig. 3, the model uses CTA slice input 2 R256�256 as

the model input, which generates the aorta segmentation result
y1 2 R256�256 and the intimal flaps segmentation result
y2 2 R256�256.

In order to enhance the accuracy and avoid overfitting, we set
21 hidden layers in the first CNN for aorta segmenting. To prevent
gradient vanishing, residual blocks are employed at each block. The
ascending and descending aorta are distant from each other, and
they are simple in shape (forming a circle). Expanding the recep-
tive field to better extract information on the location of the aorta
can prevent other somewhat circular structures from being identi-
fied as false positives. Li et al. [28] demonstrated that dilated con-
volution can effectively expand the receptive field of the network.
Therefore, as shown in Fig. 3, we added dilated convolution at the
bottleneck of the first CNN [29], which improves the CNN’s ability
to capture global information in order to locate the aortas more
accurately.

The second CNN was established according to the U-Net archi-
tecture [30], which adopts standard convolutional layers. Rectified
linear unit (ReLU) with dropout is used in both CNNs to increase
the convergence rate.

The networks used for aorta and intimal flap segmentation were
trained with the Dice loss function. Output layers generate seg-
mentation results with a sigmoid function 1= 1þ e�xfð Þ that returns
the distribution of the targets and backgrounds. Here, xf denotes
the output of the last convolutional layer.
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2.2.2. Loss function
In the first stage of extracting the aortic region from the entire

scan and the second stage of extracting the intimal flaps from the
aortic region, the target occupies only a small part of the entire
image. Dice loss [31], which compares the predicted results with
the ground truth, can cope well with this situation. Thus, the two
sequential CNNs were both trained with Dice loss, as in Refs.
[32,33]:

Dice loss ¼ 1� 2 X \ Yj j
Xj j þ Yj j ð1Þ

where X and Y represent the predicted results and the ground truth,
respectively. No background pixels will be included in the calcula-
tion; even if the target is only a small part of the image, Dice loss
can return an appropriate loss function to drive the training of the
network.

3. Experiment and results

3.1. Training and testing data

The data we used were collected at Tongji Hospital; they con-
sisted of 279 CTA volumes—including 89 type I, 17 type II, 66 type
III, and 107 normal cases—of which 137 were used for testing. We
constructed two image datasets according to these CTA volumes
for aorta segmentation and intimal flap segmentation. The aorta
segmentation dataset for training consists of 1006 + 8958 � 2 =
18 922 images from 70 CTA volumes, among which 8958 images
were sampled from aortic segments. Considering the different
dosages of contrast-enhancement agents used in patient examina-
tions, we adjusted the image brightness to half for data enhance-
ment. The other 1006 images were sampled outside the aortic
area to prevent the misidentification of other structures as the
aorta. A sketch map is provided in Fig. 1.



Fig. 2. The identification procedure. (a) Overview of the approach: After the first segmentation stage, each slice is categorized into three types according to features of the
segmented areas, corresponding to three segments of the aorta: ① an aortic arch, ② coexistence of an ascending aorta and descending aorta, and ③ a descending aorta only.
The value of threshold Thð Þ is 10, which is obtained by evaluating the point of inflexion on the receiver operating characteristic (ROC) curves. A detailed description of Th can
be found in the second paragraph of Section 3.3. The red arrows point to the location of intimal flaps. (b) Illustration of the sliding window. Slices resembling an ‘‘8” shape are
categorized as class 1. Slices with double- and single-circular patterns are categorized as classes 2 and 3, respectively. All other cases are considered to be errors. These three
different classifications correspond to the cross-sectional characteristics of the aortic arch, ascending aorta, and descending aorta, respectively. SRAD: speckle-reducing
anisotropic diffusion; xD: the number of CTA slice with AD; S: the size of sliding window; K and M: the number of steps for sliding window, respectively.

Fig. 3. Network architecture of the aorta segmentation network. The numbers
inside the brackets of the figure denote the number of channels for each
convolutional module. Different dilated rate dilation convolutions are used to
enhance the localization capability of the network to avoid the identification of
other somewhat circular structures as aorta. All convolutions other than the 1 � 1
convolution are set to stride 1 and kernel size 3. We cascade two convolutions to
form the ConvBlock. Conv: convolution.
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The second stage of the proposed approach is to segment the
intimal flap inside the aorta. We fed all the images to CNN 1 to
extract the aortas and uniformly resized the images to a resolution
of 256 � 256 as the data sources. After filtering and removing
incorrect segmentation results, we obtained 61 190 images. These
images were classified into two categories: AD (positive) and nor-
mal (negative). Motivated by Han et al.’s work [34], in which a
semi-supervised approach is used to train the segmentation net-
work, we used the Hessian matrix (HM)-based method [18] to per-
form a preliminary detection of the intimal flaps on each image;
5752 images, matching the ground truth, were selected as part of
the training set at this stage, and the associated results were used
as their labels. In addition, 575 negative images with shadows near
the edges were added to the training set. The remaining 54 863
images were used for testing at the slice level. The 5752 and 575
images used for training were partially obtained from the 70 sam-
ples previously used for CNN 1 and partially obtained from an
additional 72 samples. Therefore, a total of 142 cases were used
for training, and the remaining 137 cases were used for testing.
Data enhancement (Fig. 1) was conducted on the training images;
in addition to halving the brightness adjustment, we rotated the
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image counterclockwise by 90�. In this way, a training set compris-
ing 13 804 images was constructed.

The remaining 137 patients were used for testing. We sampled
54 863 images from these cases to assess the network’s ability to
recognize difficult-to-identify images at the slice level. Six ima-
geology features that induce identification errors were generalized.
A more detailed distribution of the 54 863 images at the slice level
was obtained according to their features in iconography, as shown
in Fig. 4.

It should be noted that 19 type I and 26 type III cases were used
to evaluate the diameter measurement accuracy via the root mean
square error (RMSE). At the end, the system recommends a surgical
method, which is ascending aortic/arch surgery, TEVAR [35], or
their combination. The feasibility of the recommended surgical
method according to the proposed DDAsys was verified on 65
patients undergoing 65 surgeries.

We used the deep learning CNNs (as shown in Fig. 2) with the
optimal performance in the validation set as the final model. The
aorta segmentation and the intimal flap in the final model achieved
the Dice coefficients [36] of 0.958 and 0.913, respectively.

3.2. Statistical analysis

The precision, sensitivity and recall, specificity, F1 score, and
area under the curve (AUC) of the receiver operating characteristic
(ROC) curve, with two-sided 95% confidence intervals (CIs), were
used to quantify the system’s performance in AD recognition
[37]. The precision, sensitivity and recall, specificity, and F1 score
of each class are related to the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) rates [38], which
have the following formulas:

Precision ¼ TP
TP þ FP

ð2Þ

Sensitivity=recall ¼ TP
TP þ FN

ð3Þ

Specificity ¼ TN
TN þ FP

ð4Þ
Fig. 4. Distribution of positive and negative images. The middle ring represents the pr
2. calcification, 3. external shadow, 4. artifact, 5. weak contrast intimal flap, and 6. intima
of the ring. The dotted red lines represent the locations of intimal flaps that are difficu
represent the difficult-to-identify features produced by imaging manifestations similar
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F1 ¼ 2 � Precision � Sensitivity=recall
Precision þ Sensitivity=recall

ð5Þ

In addition, we employed an average F1 score to evaluate the
overall classification performance across all classes of data, as
follows:

F1

�
¼ 1

Nc

XNc

n¼1
F1n ð6Þ

where Nc is the number of classes.
The RMSE and mean absolute error (MAE) were used to evalu-

ate the accuracy of the diameter measurements:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

XNd

i¼1

Di � bDi

� �2

vuut ð7Þ

MAE ¼ 1
Nd

XNd

i¼1

Di � bDi

��� ��� ð8Þ

where Di is the actual average diameter of the ith test cases, bDi is
the measured average diameter of the ith test cases, and Nd is the
number of test cases.

3.3. Performance at the patient level

We evaluated DDAsys in terms of both recognition and dissec-
tions classification; the results are provided in Tables 1 and 2,
respectively. It can be seen that DDAsys achieves an F1 score of
0.984, a sensitivity of 0.980, and a specificity of 0.976 for recogni-
tion. To further evaluate the effectiveness of DDAsys, we compared
it with a commonly used deep classification network, ResNet18
[39]. The results show that DDAsys outperforms ResNet18 in terms
of both higher recognition and higher classification accuracies of
ADs at the patient level due to its substantially increased true pos-
itive rate at the slice level (Table 3).

A sigmoid function 1= 1þ e� xD�Thð Þ� �
(where xD is the number of

CTA slice with AD, and Th represents the threshold for patient-
level diagnosis) was used to transform the number of abnormal
oportions of positive to negative images. Six kinds of images (1. internal shadow,
l flap near the edge of aortas), which are difficult to identify, are shown in the center
lt to detect due to weak contrast or imperceptible position; the dotted blue lines
to intimal flap; the red arrows point to the location of the internal shadow.



Table 1
Performance comparison of the proposed DDAsys method and ResNet18 regarding recognition of ADs and normal cases.

Class of cases DDAsys sensitivity DDAsys specificity DDAsys precision DDAsys F1 score ResNet18 F1 score

Normal cases 0.979 (0.975, 0.984) 0.977 (0.975, 0.980) 0.956 (0.951, 0.962) 0.967 (0.964, 0.971) 0.841
Dissection cases 0.980 (0.977, 0.983) 0.976 (0.972, 0.980) 0.988 (0.986, 0.990) 0.984 (0.982, 0.986) 0.899

Table 2
Classification rate comparison of DDAsys and ResNet18 for three types of AD.

Type of cases DDAsys sensitivity DDAsys specificity DDAsys AUC DDAsys F1 score ResNet18 F1 score

Type I 0.971 (0.965–0.977) 0.980 (0.978–0.983) 0.959 (0.953–0.964) 0.956 (0.951–0.961) 0.793
Type II 0.857 (0.845–0.895) 0.992 (0.991–0.994) 0.855 (0.833–0.877) 0.857 (0.845–0.886) 0.333
Type III 0.941 (0.935–0.947) 0.988 (0.986–0.990) 0.942 (0.936–0.948) 0.960 (0.956–0.963) 0.813
Normal 0.978 (0.973–0.981) 0.978 (0.975–0.981) 0.966 (0.962–0.971) 0.967 (0.963–0.970) 0.841

Table 3
Comparison of the sensitivity of DDAsys, HM, and ResNet18 in terms of recognition of
ADs.

Method Weak contrast
intimal flap

Intimal flap near
the edge of aortas

Other intimal
flaps

DDAsys 29.9% 39.6% 100.0%
HM 30.4% 50.5% 99.6%
ResNet18 24.4% 6.9% 67.4%
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slices in the ascending and descending aortas into dissection
scores, thereby producing a diagnosis result at the patient level
(Fig. 2). By adjusting the thresholds for the ascending and descend-
ing aortas, respectively, we obtained the ROCs of different classes
in order to further evaluate the classification performance of
DDAsys, as shown in Fig. 5(a). The classification sensitivities
reached 97.1%, 85.7%, 94.1%, and 97.8%, respectively (Fig. 5(b)).
The AUCs for types I–III and normal were 0.959 (95% CIs 0.953–
0.964), 0.855 (0.833–0.877), 0.942 (0.936–0.948), and 0.966
(0.962–0.971), respectively (Fig. 5(a)). We evaluated the point of
inflexion on the ROC curves so as to yield the threshold.

The rapid rise of the curves in Fig. 5(a) indicates that DDAsys is
able to maintain high sensitivity and specificity at the same time.
The performance soon reaches a bottleneck, and changes in thresh-
olds no longer affect it; this indicates that there are fewer false pos-
itives or false negatives.
3.4. Recognition performance at the slice level

Six imageology features at the slice level that induce identifica-
tion errors were generalized (Fig. 4); moreover, in the training set,
the proposed algorithm considers the external shadow feature
(which usually appears along the aortic edge but originates from
the connective tissue). This feature helps prevent the identification
of any anomalies as intimal flaps, which reduces the potential
errors caused by these six features and avoids overfitting while
ensuring true dissection detection. Subsequent experiments
demonstrated the precision of DDAsys at the slice level, further
revealing its performance on these obscure features.

Four imageology features are often encountered in false positive
samples: internal shadows, calcification, artifacts, and external
shadows. Images with artifacts have similar imageology character-
istics with intimal flap. External shadows in images are often
misidentified as false lumen and are hence prone to incur false pos-
itives. Moreover, internal shadows and calcification may cause
noticeable gray value differences in the image, which usually
appear between normal aortas and dissection-bearing aortas and
hence intensify the challenge of recognition.

Table 4 shows the performance of the proposed DDAsys method
in identifying the four features. DDAsys achieves an average sensi-
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tivity of 93.8% (with the highest and lowest sensitivity rates at
98.9% and 90.3%, respectively), which ensures the accuracy of sub-
sequent dissection classifications.

The other two features leading to false negatives are considered
here—that is, the weak contrast intimal flaps and the intimal flaps
near the edge of aortas—whose imageologies are shown in Fig. 4.
The corresponding results are shown in Table 3, which indicates
the arduousness of achieving a high recognition accuracy with
both factors.

The performance of DDAsys at the slice level was further com-
pared with those of HM and ResNet18, respectively. Compared
with HM, DDAsys has a higher average sensitivity on negatives,
at 95.0% in comparison with 75.3% (Table 4).

Although ResNet18 slightly outperforms DDAsys for negatives,
ResNet18’s cost of accuracy loss in detecting positives is even larger
than that of DDAsys (Table 3); hence, DDAsys still performs better,
with a higher average accuracy in intimal flaps detection of 56.5% in
comparison with 32.9% for ResNet18. The high average precision on
both positive and negative slices explains DDAsys’s high average
accuracy at the patient level because it is not rational to rashly dis-
card the positive slices, whereas amass of false positiveswill lead to
both identification and classification errors, which will lead to a
decrease in the recognition accuracy at the patient level.

The results in Tables 3 and 4 show the advantages of DDAsys
over HM and ResNet18. These advantages are because DDAsys is
based on deep convolutional networks, and because part of its
training data is extracted using the HM algorithm, which enables
a balance of sensitivity and specificity.

The distribution of the features extracted by DDAsys is shown in
Fig. 5(c). Apart from a few misclassification results, there are sep-
arating boundaries among different classes of case clusters. More-
over, most of the misclassification results orient to adjacent
vertical areas. This implies that misjudgments usually occur in
the detection of ascending ADs, which may be a key to further
improving accuracy in subsequent studies.

3.5. Diameter measurement and surgical methods recommendation

Furthermore, according to the extracted section of the aorta, the
aorta’s diameter can be measured by DDAsys as well. For the
ascending aorta, we calculated the mean diameter from the root
of the aorta to the aortic arch. For the descending aorta, we
detected the section between the aortic arch and the abdominal
aorta. The results are provided in Table 5.

In order to verify the value of the system in clinical application,
DDAsys provides a recommendation to the cardiologist to adopt
ascending aortic/arch surgery and antegrade TEVAR for patients
with type I and ascending aortic/arch surgery for type II dissection.
In contrast, for patients with type III dissection, TEVAR will be
recommended. We tested the DDAsys’s recommended surgical



Fig. 5. The performance of DDAsys. (a) The ROC of different classes. Each class has
two curves, which are obtained by adjusting the thresholds of the ascending and
descending aortas, respectively. The average AUC of the two curves is used for the
evaluation. (b) Confusion matrix on the classification. Values greater than 0 for non-
shaded fields show misclassification. (c) Feature distribution of the test cases. Red
dotted circles represent the misclassification results, and arrows indicate the
category aggregation region to which they belong. Different classes of cases have
clustered in different areas. FA: fix the threshold of the ascending aorta; FD: fix the
threshold of the descending aorta.
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treatments on 65 patients, comprising seven cases in which the
cardiologist adopted ascending aortic/arch surgery and antegrade
TEVAR, four cases in which ascending aortic/arch surgery was
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performed, and 54 cases in which TEVAR was performed. The rec-
ommendations given by DDAsys reached an average consistency of
88.6% with the actual surgical treatments performed by experi-
enced clinicians (Table S2 in Appendix A).

4. Discussion

In this study, we propose a dual-functional system that aims to
assist non-cardiologists in diagnosing ADs. Our system demon-
strates high accuracy in both classification and diameter measure-
ment. In this way, patients can be classified and treated in a timely
manner. The results in Tables 3 and 4 indicate that traditional
image-processing algorithms and deep classification networks can-
not maintain a high level of accuracy on both positive and negative
challenging samples, and the accuracy of our system on positive
challenging images is still insufficient, as shown in Fig. 6. We per-
formed a detailed analysis of CTAs at the slice level, and challeng-
ing samples have been included in our dataset, which helps in
facilitating the analysis of indistinguishable dissection situations
and in breaking through performance bottlenecks.

Artifacts [40,41] often appear around the aorta because the pre-
sent dataset was collected without electrocardiogram (ECG) gating.
Experienced physicians can distinguish artifacts, but for AI-aided
diagnostic systems, such interference inevitably increases the
probability of misjudgment. In addition, due to the variances in
the dosages of angiographic contrast enhancer used by different
patients, the contrast of CTA volumes varies considerably. Our deep
learning model can distill the experiences of physicians in dealing
with artifacts and extract high-order features of CTA images in
such a way that the model’s effectivity for diverse images can be
expected to be considerably enhanced.

It should be noted that DDAsys is capable of identifying abnor-
malities at the slice level, thereby enabling comprehensive analysis
of the entire CTA volume. DDAsys maintains a low false positive
rate at the slice level, which improves the sensitivity of diagnosing
aortic abnormalities. We compared the number of false positive
slices detected by DDAsys and HM in some cases, as presented in

Fig. 7. The results show the average values FPT ¼ PNT
j FPj

� �
=NT of

false positives in different aortic segments that should not contain
positive slices for different types of samples, where T denotes the
type of cases, NT denotes the number of cases used for comparison
for the Tth type, and FPj represents the number of false positive
slices detected by the algorithm in the ascending aorta or descend-
ing aorta of the jth sample. The number of false positives detected
by DDAsys at each aortic segment is significantly lower than that
detected by HM. Since type II has the lowest number, its mean
FPT has the most significant impact on a large number of false
positives. Correspondingly, in Fig. 7, both HM and DDAsys have
the highest average false positives for type II.

Importantly, DDAsys’s refined DeBakey recognition F1 score of
0.984 and average classification F1 score of 0.935 can aid clinicians
in choosing appropriate surgical methods. To validate our system’s
diagnostic advice capability, we examined the actual surgical
methods used on 65 test patients, seven of whom underwent
ascending aorta replacement, 54 underwent TEVAR and four cases
underwent their combination. The average consistency between
the recommended surgical methods and those actually applied
by experienced clinicians was 88.6%. Thus, DDAsys can not only
effectively reduce the workload of non-cardiologist physicians
(e.g., those in the intensive care unit (ICU)) but also provide valu-
able treatment recommendations to surgeons. Moreover, DDAsys
provides highly precise measurements of the average aortic diam-
eter, enabling a thorough analysis of a greater number of slices
within the same timeframe. Therefore, DDAsys holds the potential
to aid surgeons in accurately selecting the appropriate artificial



Table 4
Recognition comparison among DDAsys, HM, and ResNet18 for negative images.

Method Identification sensitivity of the images (%)

Internal shadows Calcification Artifact External shadow Other negative images

DDAsys 92.2 98.9 93.6 90.3 99.9
HM 64.1 71.0 67.9 74.3 99.0
ResNet18 98.5 100.0 98.3 99.1 99.9

Table 5
Diameter measuring accuracy.

Aortic trunks RMSE (mm) MAE (mm)

Ascending 0.994 0.797
Descending 0.767 0.541

Fig. 6. Examples of the segmentation of challenging slices. The intimal flaps in the
first three examples are all located at the edge of the aortas, while the last two have
weak contrast.

Fig. 7. Comparison of the HM-based method and DDAsys in terms of the numbers
of false positives. The average number of false positives (the smaller the better) on
the sections which should not contain positive slices: ① descending aorta (Ds) in
cases of type II, ② ascending aorta (As) in cases of type III, ③ ascending aorta in
normal cases, and ④ descending aorta in normal cases are calculated.
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blood vessel and coated stent graft during surgery, thereby reduc-
ing the duration of intraoperative circulation stoppage and enhanc-
ing surgical outcomes.

The DDAsys presented here can be expected to help meet the
efficiency and accuracy requirements of clinical applications. How-
ever, this study has several limitations. For images with weak con-
trast or those in which the intimal flap is located at the aortic edge,
DDAsys may not be precise enough to fully avoid misidentification.
Furthermore, the system can only offer recommendations based on
the DeBakey classification, and thus lacks analysis of the breach
location, aortic root condition, and the blood supply to vital
branches. Future research should focus on enhancing the compre-
hensiveness of the data distribution and incorporating inter-center
analysis.
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5. Conclusions and future work

This study presents a dual-functional deep learning system,
DDAsys, that aids in the recognition, classification of ADs, and
the measurement of aortas, achieving high accuracy at both the
slice and patient levels. The system identifies six types of interfer-
ing features, significantly reducing false positives. Moreover, it
offers practical recommendations for clinicians regarding surgical
methods, as well as the selection of artificial blood vessels and
coated stent grafts. This could be a valuable reference for clinicians
with patients undergoing cardiac surgery, potentially reducing
operation times. Future work includes further increasing the diag-
nostic accuracy with weak contrast and intimal flaps close to the
edge of the aortas. We also hope to implement the detection of aor-
tic ulcers and intramural hematomas to achieve early warning.
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Appendix A. Supplementary data

The test dataset used to support the findings of this study is
publicly available at Mendeley Data, V1(doi: 10.17632/
5b3wx7mkk6.1, 10.17632/4yfcyv5xsk.1, and 10.17632/2yxbmch-
mgg.1). Any data use will be restricted to noncommercial research
purposes.

The total images in slice level could be visited through
https://pan.baidu.com/s/1gcCAw5ZPbNP5tR4dE0n45w with code
w7fi.

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2023.11.014.
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