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The patterns of material accumulation in buildings and infrastructure accompanied by rapid urbanization
offer an important, yet hitherto largely missing stock perspective for facilitating urban system engineer-
ing and informing urban resources, waste, and climate strategies. However, our existing knowledge on
the patterns of built environment stocks across and particularly within cities is limited, largely owing
to the lack of sufficient high spatial resolution data. This study leveraged multi-source big geodata,
machine learning, and bottom-up stock accounting to characterize the built environment stocks of 50
cities in China at 500 m fine-grained levels. The per capita built environment stock of many cities (261
tonnes per capita on average) is close to that in western cities, despite considerable disparities across
cities owing to their varying socioeconomic, geomorphology, and urban form characteristics. This is
mainly owing to the construction boom and the building and infrastructure-driven economy of China
in the past decades. China’s urban expansion tends to be more ‘‘vertical” (with high-rise buildings) than
‘‘horizontal” (with expanded road networks). It trades skylines for space, and reflects a concentration–
dispersion–concentration pathway for spatialized built environment stocks development within cities
in China. These results shed light on future urbanization in developing cities, inform spatial planning,
and support circular and low-carbon transitions in cities.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urbanization is one of the most important global megatrends of
the past century [1,2]. The next three decades will see another 2.5
billion rural residents moving into urban areas—90% of them being
from Asia and Africa—and approximately 68% of the global popula-
tion will live in cities by 2050 [3]. Urbanization represents a pro-
cess of population concentration [4], expansion of construction
land [5], together with the accumulation of materials in buildings
[6] and infrastructure [7] (built environment) that defines the
physical space of urban activities and provides key services such
as shelter and mobility [8]. The construction, maintenance, and
demolition of urban built environment stocks result in major sus-
tainability challenges for cities [9–11], such as resource demand
[12], energy use [13], greenhouse gas (GHG) emissions [14,15],
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and construction and demolition waste generation [16]. Therefore,
understanding the patterns of urban built environment stock
development is important to facilitate urban system engineering,
inform the circular and low-carbon transition of existing cities,
and shed light on future urbanization in the Global South [17].

Previous studies on the patterns of built environment stocks
were mostly focused at the regional or national scales, particularly
for the temporal dynamics of key construction materials, such as
steel [18,19] and cement [20], and sectors, including buildings
[21] and subways [22]. A handful of efforts were made at the urban
scale [23–25]; however, our existing knowledge of the spatial pat-
terns of built environment stocks across and particularly within
cities is limited, largely owing to the lack of high spatial resolution
data—which is highly data- and labor-intensive [26]. Emerging
new types of urban big data, such as point-of-interest data [27],
and technologies, such as remote sensing and deep learning
[28,29], offer an opportunity to address such gaps. However, this
is not fully captured in the literature.

China is a living laboratory for global urbanization over the past
four decades [30]. It has experienced a boom in the development of
urban built environment stocks. This benefits economic growth
and the well-being of urban residents in China. It also results in sig-
nificant environmental challenges, including construction and
demolition waste generation [16,31] and GHG emissions [32,33].
A thorough benchmarking and understanding of built environment
stocks across and within cities at different levels of development is
essential for China’s endeavor to improve the quality of new urban-
ization, build zero-waste and eco-cities, and achieve its climate
ambition of ‘‘peaking before 2030 and neutrality before 2060”
[33]. However, existing characterization of built environment
stocks for Chinese cities either focus on specific construction
materials [24] or sectors [34–36] without spatial resolution, or
are limited to a few cities, such as Beijing [37] and Shanghai [38],
or urban areas, such as Tiexi District of Shenyang [39], that cannot
support cross-city comparison.

Here, we aimed to address these knowledge gaps by leveraging
various urban systems engineering methods involving big geodata,
machine learning, and bottom-up stock accounting. We quantified
the built environment stocks of 50 Chinese cities and explored
their spatial patterns across and within them. Our findings help
to inform waste management, urban mining, climate change miti-
gation, and spatial planning, and the circular and low-carbon tran-
sition of Chinese cities, shedding further light on the sustainable
urban development of other cities worldwide.
2. Materials and methods

The overall workflow for characterizing the spatialized built
environment stocks of the 50 cities in China is shown in Fig. 1.
Briefly, multi-source geodata was initially collected and the mate-
rial composition intensity (MCI) database was established, fol-
lowed by leveraging bottom-up stock accounting and machine
learning approaches to calculate gridded building and infrastruc-
ture material stocks of 50 Chinese cities on 500 m fine-grained
levels. Finally, a spatial analysis was conducted to reveal the path-
way for spatialized urban built environment stock development
across and within cities in China.
2.1. Scope and data sources

The built environment stocks considered in this analysis included
different types of buildings, such as agricultural, commercial, educa-
tional, historical, industrial, mixed, municipal, parking, public, resi-
dential, sports, and storage, and transport infrastructure, including
roads, railways, and subways. Other types of infrastructure includ-
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ing ports and pipelines contribute very little to the total urban built
environment stock and are considered negligible. The year of refer-
ence for the calculation was 2018; it was largely based on the avail-
ability of multi-source big geodata, and 50 Chinese cities were
selected for analysis. They cover all provincial capitals and cities of
economic, cultural, and location importance. Together, they account
for 50% of the gross domestic product (GDP), 32% of the population,
and 15% of the built-up land area of all cities in China, and are
deemed representative and sufficient for our comparison.

The important datasets of these 50 selected cities include build-
ing footprints—from Baidu, the largest online map portal in China,
building age—mainly from real-estate company websites, land
use—on a 500 m resolution for five land use categories from the
Essential Urban Land Use Categories in China database [40], except
for the three sample cities (Beijing, Guangzhou, and Shenzhen) that
are based on a 30 m fine-grained level for 12 land use categories,
points of interest (POIs)—from Amap, the largest mobile online
map platform in China, transport infrastructure—mainly from
OpenStreetMap, gridded population—fromWorldPop the mainland
of China dataset [41], socioeconomic development—mainly from
the municipal statistical yearbook, and MCI data collected from
various sources (Supplementary material Sections S1.1–1.6).

In particular, a China-specific building MCI database was com-
piled from various sources, including the bills of quantities, expert
interviews, and literature, covering over 2000 sample buildings
constructed between 1963 and 2017. They were classified into
12 building typologies (agricultural, commercial, educational, his-
torical, industrial, mixed, municipal, parking, public, residential,
sport, and storage). The road and subway MCIs were collected from
construction bills provided by several construction companies in
China (Supplementary material Section S1.7).

2.2. Bottom-up and spatially refined building stocks of three sample
cities

Three cities, Beijing, Guangzhou, and Shenzhen, were selected as
the training samples based on data availability. In particular, the 12
building types from 30 m fine-grained land use data were collected
in the three cities from the corresponding municipal planning
administrations (Supplementary Fig. S2). A bottom-up and spatially
refined building stock accounting method was used for these three
cities, based on our previous study [37] and shown in Eq. (1). Ten
types of construction material were considered: cement, steel, tim-
ber, brick, gravel, sand, asphalt, lime, glass, and ceramic.

MSm;i ¼
X

m;i

BFi � NF�MCIm;i
� � ð1Þ

where MSm,i represents the building stock of material m present in
building type i, BFi (measured inm2) is the area of the one-floor build-
ing footprint, NF represents the number of building floors, andMCIm,i

(kg�m�2) is the composition intensity of material m of type i.

2.3. Machine learning for estimating building stocks for the other 47
cities

Accurate building data with attributes of function, year of con-
struction, and 30 m fine-grained land use data were unavailable for
the other 47 cities. Therefore, we leveraged machine learning models
to estimate building stocks using the gridded stock values of the three
training sample cities aggregated at a 500m resolution.We combined
building attributes and POI attributes to encode each grid with a vec-
tor and utilized the random forest model to build the mapping from
the grid vector to its material stocks. The model was trained using
80% of the data from Beijing, Guangzhou, and Shenzhen, validated
using the remaining 20%, and eventually applied to estimate the
building material stock values for each grid of the other 47 cities.



Fig. 1. Study design and workflow for characterizing the built environment stocks of 50 cities in China at 500 m fine-grained levels. MCI: material composition intensity;
POIs: points of interest; MS: material stock; GDP: gross domestic product; ML: machine learning; DBSCAN: density-based clustering algorithm.
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2.4. Transportation material stock calculation

The material stock value was computed for the urban trans-
portation systems in all 50 cities based on the lengths and MCIs
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of railways, subways, and roads, as shown in Eq. (2). Road MCIs
cover five levels: expressways, first-, second-, third-, and fourth-
class roads. Railway lines, subway lines, and subway stations were
considered for the railway and subway stock estimation.
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MSm;j ¼
X

m;j

TLj �MCIm;j
� �þ S�MCIm;Sð Þ ð2Þ

where MSm,j is the transportation stock of material m in the trans-
portation construction sector j (road, railway, and subway), TLj is
the length of transportation (measured in m) in sector j and MCIm,

j is the composition intensity of material m in sector j (measured
in kg�m�1). S is the subway station, and MCIm,S is the composition
intensity of material m in subway station S.

2.5. Spatial statistics for pattern identification

Material stock and population values were used from
500 m � 500 m grids for pattern identification in spatial statistics
(Supplementary material Section S3). The grids with the top 1%
stock values are regarded as building stock centers. A density-
based clustering algorithm (DBSCAN) [42] was used to aggregate
the high-stock grids together (Section S3.1). The dispersion index
was calculated for each DBSCAN cluster to quantify the spatial dis-
persion of grids (Section S3.2). The city-level building stock per
capita was calculated to understand the role of economic develop-
ment. The unevenness of the grid-level building stock was deter-
mined using the Gini coefficient and the Lorentz curve
(Section S3.3). Fitting the grid stock distribution of all 50 cities
showed that they conformed to a two-parameter exponential dis-
tribution regardless of size, location, and economic development
levels (Section S3.4).

3. Results and discussion

3.1. Patterns of urban built environment stocks across cities

The urban built environment stocks of 50 Chinese cities
increased to 110 Gt in 2018, which is larger than the total global
resource extraction in 2017 (92 Gt) [43]. Buildings (64.3%) and
roads (33.4%) dominated the overall construction material stock,
whereas other infrastructure only contributed a small share
(2.3%). Nonmetallic minerals represented by gravel (51 Gt), cement
(26 Gt), sand (17 Gt), and brick (12 Gt) were responsible for 96% of
the total types of materials. Steel (1.9 Gt), timber (0.6 Gt), lime (0.5
Gt), and other materials (totaling 1.0 Gt) were used in relatively
low quantities (Supplementary Figure Fig. S10).

The total urban built environment stock ranged from 350 Mt in
Lhasa to 6771 Mt in Beijing when compared across cities. Stock
quantities in 49 out of 50 Chinese cities (2202 Mt on average;
except for Lhasa with 350 Mt) and stock densities (4.97 t�m�2 on
average) in all 50 Chinese cities were substantially higher than in
many western cities—for example, 67 Mt and 0.22 t�m�2 in Odense
[12], and 380 Mt and 0.96 t�m�2 in Vienna [44], while per capita
stocks (261 tonnes per capita (t�cap�1) in China) were at approxi-
mately the same level—329 t�cap�1 in Odense [12], 247 t�cap�1 in
Wakayama [12], 210 t�cap�1 in Vienna [44], 209 t�cap�1 in Padua
[45], and 272 t�cap�1 in the United Kingdom [46] (Supplementary
Table S19). These differences could be explained by the large size
and population, but limited built-up area in most Chinese cities
[47], together with construction-driven urbanization and real
estate-based economic development in the past decades [48].

The urban built environment stocks were unevenly distributed
across Chinese cities with varying levels of socioeconomic develop-
ment (Fig. 2 and Supplementary Figs. S11–14). Cities with large
stocks were mostly distributed in the east (35.88%), north
(18.58%), and southwest (11.66%), whereas relatively lower
amounts were found in cities in the south (9.74%), northeast
(9.56%), central (9.11%), and northwest (5.46%) (Supplementary
Fig. S15). In particular, the top 10 cities with the largest stocks
were all distributed in China’s major urban agglomerations. This
146
includes 3.3 Gt in Hangzhou and 6.8 Gt in Beijing, represented by
25.9 Gt in the Yangtze River Delta and 17.9 Gt in Jing–Jin–Ji
Metropolitan Region, which account for 62% of the total. However,
cities in the northeast (323 t�cap�1, 3.8 kg�CNY�1) and northwest
(346 t�cap�1, 4.0 kg�CNY�1) show significantly higher values than
other regions (Supplementary Fig. S16) on a per capita level and
per GDP level. This was mainly related to the shrinking population
in the northeast [49] and the low population density in the north-
west [50], suggesting that material occupancy does not translate
into economic growth in these areas [51]. A consideration of the
built-up areas shows that cities in the north have the densest
stocks (6.1 t�m�2), while the southwest and northwest have lower
stock density (both approximately 4.0 t�m�2 on average, Fig. S16).
This reflects the geomorphological and socioeconomic characteris-
tics of western China, which has more abundant land and less
dense populations than the east [52].

Statistically linear trends between the urban built environment
stocks and socioeconomic factors confirm that cities with larger
populations and areas and richer cities (in terms of GDP) tend to
accumulate more construction materials than smaller and poorer
cities (Figs. S12–14). This is also reflected by the fact that the urban
built environment stocks tended to increase with an increasing tier
rank and urbanization rate after categorizing the 50 cities into six
tiers (first, new-first, second, third, fourth, and fifth) using an offi-
cial classification system based on urban development factors
including commercial vitality, transportation convenience, resi-
dent activity, lifestyle diversity, and future adaptability (Fig. S11).
In this context, megacities with lower stocks per capita (such as
174 t�cap�1 in Chongqing), per square meters built-up area (such
as 2.8 t�m�2 in Guangzhou), and per GDP (such as 1.3 kg�CNY�1

in Shenzhen) may have various sustainable paths of stock accumu-
lation and socioeconomic growth that deserves more in-depth
analysis to identify leapfrogging opportunities for other yet-to-be
developed cities in China and beyond.

The urban form reflecting the physical layouts, structures, and
functions of a city is an important driver of the varying levels of
material stocks in the urban built environment [53]. Most con-
struction materials were stocked in residential (43%) and industrial
(22%) areas, followed by commercial (18%), public (14%) and infras-
tructure (4%) areas on average across the 50 cities (Fig. 3(a)). How-
ever, these proportions vary by city according to their
socioeconomic characteristics. For example, Beijing is the capital
of China and has the largest share (31%) of stock in public areas
(such as education, culture, and healthcare). Meanwhile, Quanzhou
and Foshan are two important manufacturing cities in south China
that have the largest share of stocks in industrial areas at 52% and
47%, respectively. Furthermore, the variations between material
stocks and land areas in different land-use categories clearly reveal
the role of urban forms in determining built environment stocks.
For example, an average commercial area (often dense and high-
rise) accounts for only 3% of land use, but contributes 18% of the
total stock, whereas public areas are often sparse and low, account
for 49% of land use, but only contribute 14% of the total stock
(Figs. 3(a) and (b)).

The building-to-road (BtR) stock ratio in China (5.47 on average
for all 50 cities) is notably higher than that in European cities (3.45
in Salford Quays in Manchester [25], 3.13 in Odense city center
[12], and 2.94 in Gothenburg [54]) and industrialized counties
(1.65 in Japan [55], 1.12 in Germany [56], and 0.91 in Austria
[57]). This result of lower road network densities is in line with
earlier findings on the city [58] and national [59] levels in China
and suggests that China’s urban expansion tends to be more ‘‘ver-
tical” than ‘‘horizontal.” Further road and infrastructure develop-
ment, particularly in residential and commercial areas, through
better spatial planning or smart design and integration of buildings
and roads has become an urgent need to optimize urban services



Fig. 2. Urban built environment stocks (total, buildings, and infrastructure) of the 50 selected cities in China. The seven colored wheels represent stocks aggregated by region
(north, northeast, east, south, central, southwest, and northwest) accompanied by corresponding cities ranked by stock volume. The outer ring shows the total urban built
environment stocks by city in this region, and the inner ring presents the ratio of building and infrastructure stocks in each city.

Fig. 3. Statistical distribution of built environment stock related values across cities by land use categories. (a) Shares of stocks, (b) shares of land areas, and (c) building to
road (BtR) ratios. Stocks were calculated as an aggregation of stock values on the 500 m� 500 m grid level (Supplementary material Section S3.6). The dominant type with the
largest shared area is applied to the entire grid if a grid has several land use typologies (Section S1.5).
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and residents’ well-being (Fig. 3(c)) [60]. Spatially, larger BtR ratio
grids were mostly located in city centers, while lower value grids
were found in city outskirts; the BtR ratio at the grid level was
identified following a log-normal distribution across cities (Supple-
mentary Fig. S21).
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3.2. Patterns of spatially refined urban built environment stocks within
cities

The gridded building material stocks were clustered in groups
of patches using a DBSCAN when presented at a high spatial
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resolution on the 500 m � 500 m grid level [42] that detects cate-
gories based on the closeness of spatial distribution. In contrast,
infrastructure material stocks generally follow the distribution of
road lines and are spread throughout the city. Furthermore, the
spatial patterns of building material stocks in Chinese cities sug-
gest that there are three major phases of urban development:
monocentric concentration, multicentric dispersion, and multicen-
tric concentration.

Table 1 and Supplementary Table S23 present the spatial char-
acteristics (number of clusters, dispersion index (DI) of clusters,
and Gini index of building material stocks) of the three phases of
building material stock growth as the average per capita GDP of
cities increases from 70 649, 105 964, and 120 403 CNY,
Table 1
Spatial characteristics of building material stocks on 500 m fine-grained levels of the 50 C

Categories Properties Number of cities Numb

Monocentric concentration Cluster = 1 or
Cluster � 2 and DI < 20

11 1 (1–2

Multicentric dispersion Cluster > 2 and DI � 20 22 11 (2
Multicentric concentration Cluster > 2 and DI < 20 17 9 (3–2

Fig. 4. Spatial patterns of building material stocks on 500 m fine-grained levels exempl
undeveloped (from 0 to medium value of urban stock grids), developed (from medium t
cluster (the cluster of top grids) among building material stock grids, respectively (see
material stocks. (i–l) The two stages of linear correlations between building material sto
K represents the slope of different linear distributions.
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respectively. Fig. 4 shows such spatial patterns in representative
case cities (Nanyang, Chongqing, Zhengzhou, and Beijing).

� A city in its relatively early development stage forms very few
clusters (exemplified by Nanyang out of 11 cities experiencing
a monocentric concentration phase), and a limited number of
top building stock grids are compactly distributed in this city
with a relatively low dispersion index (DI = 9, Fig. 4(a)).

� An increasing number of grids with large building stocks
emerge on the outskirts of urban areas as cities continue to
develop and accumulate materials in current grids (as new
urban districts and satellite towns). Such multicentric-
dispersion phases are featured by spreading clusters (increas-
ing from 2 to 28) and growing dispersion index (increasing
hinese cities.

er of clusters Dispersion index Gini index GDP per capita (CNY)

) 9 (2–21) 0.58 (0.40–0.76) 70 609

–28) 70 (20–221) 0.65 (0.45–0.79) 105 964
5) 13 (9–19) 0.58 (0.46–0.64) 120 403

ified by Nanyang, Chongqing, Zhengzhou, and Beijing. (a–d) Spatial distributions of
o top value of urban stock grids), top (the top 1% of all urban stock grids), and top-
Section S3.1 for details of grid classification). (e–h) The Gini index (GI) of building
cks (with a break point) and population on the grid level ranked in ascending order.
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from 20 to 221) and can be observed in 22 cities (exemplified
by Chongqing and Zhengzhou in Figs. 4(b) and (c),
respectively).

� The growing urban built environment stocks gradually help
ease communication and mobility in cities by upgrading
transportation and telecommunications, attracting more pop-
ulation and businesses, and boosting the urban economy [61].
Accordingly, construction activities and building stock clus-
ters emerge in subsidiary centers that link the central and
outskirt clusters. Seventeen cities were identified in this mul-
ticentric concentration phase with a closer distance between
building stock clusters (DI under 20), including Beijing
(Fig. 4(d)).

The 11 cities at the monocentric-concentration phase are
Guiyang, Haikou, Handan, Lanzhou, Lhasa, Linyi, Nanchang,
Nanyang, Urumqi, Xining, and Zhoukou; the 22 cities at the
multicentric-dispersion phase are Baoding, Changsha, Chongqing,
Dalian, Foshan, Fuzhou, Harbin, Hangzhou, Luoyang, Nanning,
Nantong, Ningbo, Qingdao, Quanzhou, Shijiazhuang, Suzhou,
Tangshan, Weifang, Wenzhou, Wuxi, Yinchuan, and Zhengzhou;
and the 17 cities at the multicentric-concentration phase are
Beijing, Changchun, Chengdu, Guangzhou, Hefei, Hohhot, Jinan,
Kunming, Nanjing, Shanghai, Shenyang, Shenzhen, Taiyuan,
Tianjin, Wuhan, Xiamen, and Xi’an. The average values are shown
for the number of clusters, dispersion index, and Gini index, with
the ranges shown in parentheses.

Chinese cities demonstrate an ‘‘equilibrium–disequilibrium–
equilibrium” pathway of building material stock development cor-
responding to the ‘‘concentration–dispersion–concentration”
pattern observed above. This was initially shown in the changes
in the Gini index values (average from 0.58, 0.65, and 0.58 for
the three phases; Table 1 and Figs. 4(e)–(h)). Moreover, a two-
parameter exponential distribution pattern was revealed for the
building material stock growth of the 50 cities (exemplified by
the probability density functions of Beijing, Suzhou, and Linyi in
Fig. 5(a) and detailed for other cities in Supplementary materials
Section S3.4 and Appendix A.6).

The distribution of the 50 cities in the four quadrants defined by
the location parameter (horizontally with an increasing proportion
of low-stock grids) and the scale parameter (vertically with an
increasing evenness of stock distribution) of their respective two-
parameter exponential distributions are shown in Fig. 5(b). The
cluster centers of cities in the monocentric-concentration phase
(green star) and in the multicentric-concentration phase (blue star)
appear in the second quadrant. This indicated a relatively uniform
distribution of building material stocks. In contrast, the cluster
center of cities in the multicentric-dispersion phase (orange star)
is located in the fourth quadrant. This represents a relatively
uneven spatial distribution of building material stocks. The high
number of cities with this disequilibrium status (22 out of 50) sug-
gests an urgency for more optimized planning of urban built envi-
ronment stocks and more coordinated development of urban and
rural areas [62,63]. In this context, cities with higher, but more
equalized built environment stocks (such as Changchun with eight
clusters, 13 for DI, and 0.46 for GI) can shed light on stock accumu-
lation pathways for other Chinese cities.

The spatially refined building material stocks and gridded pop-
ulation showed a linear correlation with a breakpoint for smaller
population grids (R2 = 0.98, on average) and larger ones
(R2 = 0.94, on average) in all 50 cities at 500 m resolution. These
breakpoints are determined from the continuous piecewise linear
function algorithm [64] and mostly vary between 1000 and 3000
for gridded populations—exemplified by Nanyang, Chongqing,
Zhengzhou, and Beijing in Figs. 4(i)–(l) and detailed for other cities
in Supplementary material Section S3.5). That is, the stock growth
rate in grids with a smaller population (Klow = 526) was signifi-
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cantly higher than that in grids with larger populations (Khigh = 98).
This implies that more materials were required in the initial stage
of urbanization.

3.3. Discussion and implications

Our results reveal that the built environment stocks of many
cities in China are close to or higher than those of mature cities
in industrialized countries at the per capita level or per area level.
This is in line with earlier findings on China’s stock patterns of
major construction materials such as cement [20,65] and aggre-
gates [66] at the national level. Such patterns reflect the construc-
tion boom and real estate- and infrastructure-driven urbanization
in the past decades in China. Many cities in China are building
high-rise residential and non-residential buildings owing to their
large population and increasingly limited land area, thus trading
skylines for space. This suggests that understanding urban devel-
opment from a physical stock perspective provides an important
and complementary angle for characterizing and informing urban-
ization that is largely missing in the current literature on urbaniza-
tion that focuses mostly on population growth [67] and land use
change [68].

The spatially refined patterns of urban built environment stocks
across and within cities clearly show the role of urban socioeco-
nomic development, such as population and GDP, geomorphology,
such as location and land area, and urban form, such as BtR ratio
and land use structure, in determining the total volume and the
sectoral and spatial distribution of stocks. Therefore, the pace of
built environment construction, coordination of buildings and
infrastructure development, and tailored approaches for spatial
planning and urban resource management should consider the
varying stages of urban development in different cities [69,70].
These spatiotemporally explicit patterns could shed light on future
urbanization in western China and other cities in the world to
bypass the disequilibrium stage and avoid spatial lock-ins, and
provide the public, government, or industry stakeholders with
insights into optimized urban spatial planning and urban system
engineering towards smart resources, waste, and climate strategies
and circular and low-carbon transitions of cities.

Such implications for urban system engineering primarily apply
to resource and waste management perspectives. For example,
high-resolution mapping of urban built environment stocks allows
for an in-depth understanding of urban resource efficiency and
forecasting of the quantity, composition, location, and value of
future construction and demolition waste generation. Currently,
construction and demolition waste in China is mostly dumped or
landfilled with only 5% recycled [71]. This challenge will escalate
considering the continued urbanization and construction boom in
the foreseeable future in China. Understanding built environment
stocks with a high spatiotemporal resolution provides a character-
ization of the urban resource cadaster [12] and enables the circular
transition of cities [72]. This includes waste management and
urban mining based on spatial and logistics optimization to mini-
mize economic costs and maximize reuse and recycling.

Moreover, understanding the embodied climate impacts of
urban built environment stocks facilitates discussions on account-
ing and mitigating GHG emission during the construction and
operation of a city. The carbon replacement value (CRV) [73,74]
concept was adopted to approximate the emissions of constructing
a city that would be generated if the existing stock of a city was
replaced using current technologies and materials. The overall
CRV emissions of the 50 selected cities were estimated to be 32
Gt. This equals 60% of the global GHG emissions in 2019 [75] or
90% of the global CO2 emissions in 2021 [76]. The CRV emissions
in Beijing (2.29 Gt or 1.61 t�m�2), Shanghai (2.12 Gt or 2.12 t�m�2),
Chengdu (1.33 Gt or 2.57 t�m�2), Suzhou (1.27 Gt or 2.75 t�m�2),



Fig. 5. Building material stock growth in Chinese cities following a two-parameter exponential distribution pattern. (a) The curves exemplified for Beijing, Suzhou, and Linyi;
and (b–c) the location parameter l that determines the transition along the horizontal axis and proportion of low stock grids and the scale parameter h that refers to the slope
chart level and evenness of stock distribution of the two-parameter exponential distribution curves across the 50 cities categorized by the three phases. The two dotted lines
in (b) represent the mean values of l and h.
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and Tianjin (1.26 Gt or 1.25 t�m�2) are among the top five corre-
sponding to the highest urban built environment stocks. This is
much larger than those in European (such as 11 Mt in Odense
[73]) and Australian (such as 24 Mt in Melbourne [77]) cities.
Urban built environment stocks are essential to provide residents
with basic services. The CRV emissions in these 50 cities can be
used as a benchmark for the climate quota of the other 287
prefecture-level cities in China to reach the same level of services.
Relatively low operational emissions and high CRV emissions were
observed in two cities that dominate high technology and service-
based economies: Shenzhen and Chengdu. In this context, cities
150
with developed economies, upgraded industry structures, low
operational emissions, low built environment stocks, and low
CRV emissions (for example, Changsha, Quanzhou, Nantong, and
Xiamen in the third quadrant of Supplementary material
Fig. S22) may be regarded as a model for the low-carbon transition
of other small- and medium-sized cities in China and beyond. At
least 251 Gt of construction materials equaling 71 Gt of CRV emis-
sions (or approximately seven times the current annual carbon
emissions of China [78]) is needed for China’s further urban expan-
sion, assuming that the correlations between urban built environ-
ment stocks and socioeconomic parameters (Figs. S12–14) are
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applicable to the other 287 cities. Therefore, mitigation strategies
ranging from technological innovations for emission-intensive
construction materials (particularly steel [79] and cement [80])
to improving material efficiency [81], prolonging the building life-
time [31], and optimizing spatial plannin [82,83] are urgently
required to reduce the emissions of constructing a city. All these
should be included in future model development and policy formu-
lation from an urban system engineering perspective for the circu-
lar and low-carbon transition of cities.

3.4. Method validation and limitations

The proposed machine learning method offers a swift and effec-
tive approach for approximating urban material stocks when data
incompleteness hinders traditional methods of building stock cal-
culations. Four cross-validation approaches were designed to vali-
date the proposed model and explore the consequent
uncertainties. The prediction errors of the model were 0.23%,
3.79%, 0.119%, and 0.02% in the four different validation sets. This
indicated that this grid-based method performs well in predicting
building material stocks regardless of the city. The composition of
building materials differs to some extent in northern and southern
China owing to the different demands for winter heating. However,
the large number of grid samples, together with our three sampling
cities covering the north (Beijing) and south (Guangzhou and
Shenzhen) allow the machine learning model to map building
attributes to stock values in the sampling cities and make accurate
predictions in other cities.

A comparison of our aggregated city-level building stock results
for 2018 with a bottom-up accounting study [84] showed that the
average differences were below 20% (2.59 Gt vs 3.46 Gt for
Chongqing, 4.19 Gt vs 4.75 Gt for Shanghai, and 3.46 Gt vs 2.78
Gt for Tianjin). We believe that the building archetype classifica-
tion and reference year may contribute to these differences. Fur-
thermore, the building stock results in our study are significantly
higher than those of two other studies in a few Chinese cities
[27,38]. This gap is mainly related to the different years of estima-
tion (2018 in this study vs 2010 in previous literature) and the
underestimation of nonresidential building stocks in these two
studies (see Table S19). Overall, our study provides the first quan-
tification of urban built environment stocks across and within
cities on a large scale (50 cities).

The proposed machine learning method helped approximate
urban material stocks across and within cities with overall good
modelling performance. However, some limitations should be
acknowledged. First, the absolute stock results bear unavoidable
uncertainties and limitations owing to data gaps. Ideally, MCI data
should be specific to each building or transportation infrastructure.
We collected over 2000 building samples constructed from 1963–
2017 and used the mean value to derive the MCIs for different
building typologies. This per square meter indicator is very conve-
nient to scale up, but does not linearly scale with the floor area. For
example, a lower material intensity was identified in large-area
buildings compared with smaller buildings [85]. More material
intensities are required to withstand wind and earthquake loads
with increasing building height [86]. Thus, the absolute values of
building stock can have an uncertainty of up to ±30%. Second, the
data collection process may introduce errors since building cover-
age may be incomplete, and the vector maps of buildings and
infrastructure may differ from reality, leading to uncertainties in
the results. The performance of the machine learning model can
be compromised when handling materials such as ceramics and
glass that have a lower percentage composition. Nevertheless, their
effects were relatively negligible owing to their insignificant con-
tributions to the overall quantity. Finally, we used the process-
based emission factors from Carbon Emission Accounts and Data-
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sets (CEADs) and the Chinese Life Cycle Database (CLCD) for the
CRV calculation using eBalance software. This does not cover the
environmental impacts associated with supply chains. Therefore,
our CRVs may be underestimated owing to truncation errors [87]
in emission accounting. Overall, this study provides the first
large-scale quantification of urban built environment stocks,
although these limitations should be considered when interpreting
the results.
4. Conclusions

Multi-source big geodata, machine learning, and bottom-up
stock accounting were leveraged to characterize the built environ-
ment stocks of 50 selected cities in China at 500 m fine-grained
levels. This large-scale empirical analysis helped to reveal consid-
erable disparities in stocks across Chinese cities owing to their
varying socioeconomic, geomorphological, and urban form charac-
teristics. In particular, building material stock development in
Chinese cities appeared to follow a two-parameter exponential
distribution pattern and a concentration–dispersion–concentra-
tion pathway. Our results offer an important, yet hitherto largely
missing stock perspective for characterizing and informing urban-
ization. This informs urban planners and policy makers on spatial
planning, and facilitates urban system engineering towards the
circular and low-carbon transition of cities. The modeling frame-
work could be extended and validated using more cities to shed
more light on future urbanization in China and in other countries.
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