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Transplantation represents the most effective treatment for end-stage liver diseases but is limited by the
shortage of healthy donor organs. Extended criteria donor (ECD) liver grafts are increasingly utilized in
clinical practice to mitigate this challenge. However, impaired ischemic tolerance of these grafts jeopar-
dizes organ viability during cold storage. Machine perfusion (MP) was designed to improve organ preser-
vation and reduce posttransplant complications. Nevertheless, it is increasingly evident that MP alone
may not preserve ECD grafts optimally. Increasing emphasis has thus been placed on modified MP strate-
gies, including the use of different perfusates, modified perfusion modalities, and different therapeutic
interventions. Here, we introduce a novel term, ‘‘MP Plus,” denoting these additional strategies that
are designed to restore organ function and potentially enable regeneration of ECD grafts. In this review,
we summarize the existing and potential modified MP strategies and discuss their advantages in recon-
ditioning different ECD grafts in clinical settings.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction available organs, careful selection with reconditioning of such
Liver transplantation (LT) is currently the optimal treatment for
end-stage liver disease, but organ shortages still limit the availabil-
ity of this treatment to all patients who would potentially benefit
[1]. In 2020, 12 609 patients were newly added to the liver trans-
plant list, and the total number of candidates reached 24 936 in the
United States, with only 8 906 liver transplants performed [2]. The
use of extended criteria donor (ECD) liver grafts is increasingly pur-
sued as a way to address this disparity [3]. The frequently
described definition in the literature for ECD grafts generally
includes elderly, steatotic, infected, and split liver grafts and grafts
obtained from donors presenting circulatory death (DCD) [4].
Utilization of these organs is associated with an increased risk of
posttransplant complications, including early allograft dysfunction
(EAD), primary nonfunction (PNF), ischemic cholangiopathy, and
death [5]. However, it is expected that, in addition to closing the
gap between the numerous recipients on the waiting list and the
grafts may also lead to improved posttransplant outcomes.
The organ discard rate was 8.4% in the United States in 2018,

and this percentage could even be higher in other countries [2].
Machine perfusion (MP) is a sophisticated technique to mimic
the physiological environment of a human body, attempting to
maintain or enhance organ function [6]. With the increasing use
of ECD grafts, there is an opportunity to extend the role of MP
beyond assessment and logistics [7]. Recently, our team proposed
a novel term, ‘‘MP Plus,” to describe the use of MP combined with
additional strategies aimed at reconditioning, repairing, and regen-
erating ECD grafts ex vivo. In this review, existing and potential
newer ‘‘MP Plus” strategies are summarized, and their importance
in different ECD liver graft settings is highlighted. The essential role
of ‘‘MP Plus” in expanding the liver donor pool and further improv-
ing posttransplant outcomes is also discussed.
2. ECD liver grafts

ECD liver grafts are considered ‘‘marginal” due to various crite-
ria and are labeled to confer an increased risk for poor graft and
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patient survival after transplantation. The definition of what con-
stitutes an ECD is yet to be universally agreed upon [4,8]. However,
some characteristics that are frequently described in the literature
for ECD liver grafts include the following:

(1) Elderly liver grafts: The average age of liver transplant
donors and recipients has increased markedly over time [9].
Despite a lack of a definitive classification of what constitutes an
elderly liver graft, it is generally accepted that grafts over 70 years
are frequently discarded. Elderly liver grafts often present fibrosis,
steatosis, and viral infection, all conditions that are less tolerant to
ischemic stress and reperfusion injury [10]. Although it has been
reported that liver graft survival rates are not affected by donor
age if well selected, there is potential to considerably expand the
donor pool by utilizing marginal elderly liver grafts.

(2) Steatotic liver grafts: The prevalence of obesity is increasing
worldwide and leads to a heavy burden of the associated metabolic
syndrome and its hepatic manifestation. This has already impacted
the deceased donor pool; therefore, strategies to increase the
utilization of steatotic or fatty organs will become increasingly
important in the near future [11]. Steatotic liver grafts are gener-
ally defined as grafts presenting � 30% macrovesicular steatosis.
Increased macrovesicular fat content is thought to exacerbate
ischemia–infusion injury (IRI) through the release of reactive oxy-
gen species, which are amplified by lipid peroxidation [12]. In
addition, fat-loaded hepatocytes have been shown to cause com-
pression of liver sinusoids, a situation ultimately leading to
damaged hepatic microcirculation and an exacerbation of IRI [13].

(3) Donation after DCD: DCD is a modality of organ procure-
ment in which organs are retrieved from donors presenting a circu-
latory arrest as opposed to donation after brain death, where the
donor still has intact cardiopulmonary circulation. The use of
DCD liver grafts varies from country to country due to legal con-
straints (e.g., DCD organs are forbidden by law in Germany) but
is becoming more widely accepted and utilized as a potential
source of liver grafts [14]. According to the European Liver Trans-
plant Registry, DCD has gradually increased to represent almost
40% of adult postmortem LT in countries such as the Netherlands
and Belgium [15]. The majority of DCD liver grafts originate from
controlled DCD; the rapid retrieval technique is the preferred
recovery strategy because it allows the shortening of both func-
tional and true warm ischemia times [16]. DCD grafts are associ-
ated with a higher incidence of PNF, EAD, and ischemic
cholangiopathy [17]. Therefore, advancements in technology aim-
ing to extend the safe use of DCD organs should focus on minimiz-
ing ischemia times during organ preservation.

(4) Infected liver grafts: Viral infections such as hepatitis B and
C virus (HBV/HCV) have previously been considered contraindica-
tions to transplantation. Active HBV infection refers to positive
hepatitis B surface antigen (HBsAg), IgM anti- hepatitis B core
antigen (HBcAg), and/or hepatitis B e antigen (HBeAg), and/or high
HBV DNA levels [18]. Liver grafts from anti-HBcAg-positive donors
can be safely used, especially in HBsAg-positive or anti-HBcAg/
anti-HBsAg-positive recipients, on the condition that an adequate
antiviral strategy is added postoperatively to avoid reinfection of
the graft [19]. A study compared the outcomes of 42 HBsAg+ donors
to 327 HBsAg– donors and found no difference in posttransplant
complications or graft survival between the two groups [20].
Another study analyzed nine patients who received livers from
anti-HBcAg-positive donors and revealed that livers from these
donors should be prioritized for transplantation in a specific order:
first to recipients who are positive for HBsAg, then to recipients
who possess HBV antibodies, and finally to recipients
who are HBV-naive [21]. By identifying the risk factors for HBV
infection in both the donor and recipient prior to transplantation,
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it becomes possible to employ antiviral prophylaxis without dis-
crimination, and this can potentially mitigate the scarcity of avail-
able donors.
For HCV, detecting viral RNA levels is the main diagnostic strat-
egy [22]. Studies have indicated good short-term outcomes when
combining direct-acting antiviral agents (DAAs) treatment and
the use of HCV-positive livers in HCV-negative recipients. Doubt
exists about the incidence of acute cellular rejection (reported in
up to 16% of such recipients) [23]. Other viral (e.g., cytomegalo-
virus (CMV)), bacterial (donor infected status or sepsis), and fungal
infections can also compromise post-LT outcomes.

(5) Split liver grafts: Split livers divide a full-size graft into two
anatomically and functionally ‘‘smaller” grafts, a condition that
may lead to organ dysfunction and impair outcome [24]. The use
of split liver grafts has been demonstrated in some very specialized
centers to be a good means to expand the number of available
grafts. Due to the highly variable reported results and its inherent
logistic problems, this procedure is unfortunately not performed
on a large scale [25]. Therefore, split LT (SLT) is still regarded as
a liver graft at risk [26].
Utilization of all forementioned ECD liver grafts has a potential
risk of poor posttransplant outcomes; however, it is expected that
their more widespread use will allow us to narrow the gap
between the wait list and a few scarcities. In addition, it has been
shown that in addition to their more frequent but careful selection,
reconditioning could improve their safe use and may allow the
generation of outcomes equivalent to those obtained after the
use of standard criteria liver grafts.
3. MP and ‘‘MP Plus’’

Rather than cooling the organ on ice to slow metabolic pro-
cesses, MP aims to support normal metabolic functions as well as
possible in a physiological environment and to provide a platform
on which the organ can be evaluated, preserved, and even recov-
ered [27]. MP devices have demonstrated the early success of bio-
engineering in improving posttransplant outcomes of different
organs.

In 1812, a concept similar to ‘‘MP” first emerged in the mono-
graphy of Cesar Julien Jean Legallois, which was muted as a replace-
ment for the heart. It has been reported that the first closed system
for delivering oxygenated blood was devised by Max von Frey and
Max Gruber in 1885 [28]. Carl Jacobj created the ‘‘double hemati-
zator” consisting of two blood oxygenation pumps and isolated
lungs inserted between them in 1895 [29]. Alexis Carrel, the
1912 Nobel Prize winner, together with Charles Lindbergh investi-
gated the rejuvenation of cultured tissues and first regenerated
cells from the spleen, skin, pericardium, and portal vein of chick
fetuses ex vivo [30]. These studies contributed primarily to the
development of cardiopulmonary bypass but also formed a foun-
dation for the pioneers of MP (Fig. 1).

In 1968, Belzer et al. [31] successfully transplanted the first kid-
ney after 17 hours of hypothermic MP (HMP) using cryoprecipitate
plasma. Brettschneider et al. [32] explored the use of HMP with
diluted, heparinized, oxygenated blood through the portal vein
and hepatic artery in mongrel donor dogs, and Starzl et al. [33]
adopted this approach in 11 human LT. The first clinical trial com-
paring the feasibility and safety of HMP with static cold storage
(SCS) in human LT involved 20 liver grafts and demonstrated that
EAD rates were lower in the HMP group [34]. Based on a study of
‘‘orphan” livers, it was reported that the EAD rate, biliary
complications, and hospital stay were all reduced in patients
receiving HMP livers compared with SCS livers [35]. In 2021, a



Fig. 1. Historical development of organ preservation, including MP. SCS: static cold storage.
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randomized controlled trial (RCT) conducted by van Rijn et al. [36]
enrolled 160 patients, which also demonstrated that, compared to
conventional SCS, HMP was able to reduce nonanastomotic biliary
strictures in DCD livers. Based on a newly reported meta-analysis,
including nine RCTs and 30 cohort studies, HMP was shown to
significantly reduce the risk of nonanastomotic biliary stricture
and EAD and to improve one-year graft survival in LT with ECD
liver grafts [37].

The mechanisms through which HMP impacts liver grafts are
yet to be fully characterized. HMP supplemented with oxygen
delivered via the portal vein only (hypothermic oxygenated MP
(HOPE)) or both the hepatic artery and portal vein (dual HOPE
(D-HOPE)) has been investigated recently. Experimental data sug-
gest that HOPE significantly reduces mitochondrial oxidative
injury and further downstream tissue inflammation [38,39]. The
newly reported multicenter RCT conducted by Schlegel et al. [40]
first investigated the impact of HOPE on cumulative complications
within a 12-month period after LT and demonstrated that HOPE
could decrease the risk of severe liver graft-related events. This
conclusion is confirmed by a meta-analysis consisting of seven
RCTs. HOPE reduced major complications, lowered the rate of
‘‘retransplantation,” and allowed better graft survival than SCS
did [41].

In 2018, van Rijn et al. [42] from the Netherlands reported
a phase I clinical study including ten DCD livers preserved with
D-HOPE after SCS. The degree of bile duct injury did not increase
after reperfusion in the D-HOPE group, and there was less injury
of deep peribiliary glands compared with controls. The same group
has conducted an international multicenter phase III RCT enrolling
157 recipients comparing the efficacy of D-HOPE to that of SCS in
relation to the prevention of nonanastomotic biliary strictures after
transplantation using DCD liver grafts [43]. The trial inclusion has
recently been completed, but the results are not yet published.
However, another clinical report including 21 DCD grafts undergo-
ing HOPE or D-HOPE reported that hospital stays were shorter, EAD
rates were lower, and post-LT outcomes were better among
patients receiving perfused liver grafts [44].

Limitations to hypothermic strategies include the limited func-
tional assessment that can be made, the reduced ability to admini-
ster agents to modulate liver metabolism, and the limited benefits
in minimizing ischemic times, and therefore logistics. Normother-
mic MP (NMP) is a technique allowing the perfusion of organs with
oxygenated packed red blood cells in a colloid suspension at nor-
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mal body temperature to mimic functioning in an optimized physi-
ological state; this modality has been shown to reduce IRI clinically
compared to that with SCS [45]. In addition, parameters monitored
during NMP, including lactate clearance, pH maintenance, glucose
metabolism, and bile production, were demonstrated to predict
organ quality and posttransplant outcome [45,46]. Recently, the
Meszaros et al. [47] reported that mitochondrial respiration with
succinate and tissue viability remained stable during NMP and that
marker of outer mitochondrial membrane damage, adenosine
triphosphate (ATP) synthesis efficiency, and dissipative respiration
could predict the clinical outcome after LT. Many clinical studies
focusing on the comparative analysis of HMP, NMP, or SCS are
now ongoing to shed light on the role of MP in LT.

Although NMP allows for biliary viability testing of ECD liver
grafts prior to transplantation, it remains associated with IRI when
applied after SCS. Considering that HOPE or D-HOPE could effi-
ciently reduce IRI, researchers combined sequential D-HOPE and
NMP to further improve the resuscitation and viability assessment
of high-risk human donor livers. The first clinical trial of this com-
bination demonstrated excellent results and a low rate of post-
transplant cholangiopathy, thereby increasing the number of
transplantable livers by 20% [48]. Most recently, excellent long-
term outcomes have been reported by the same group from
Groningen, who demonstrated that donor warm ischemia time
could no longer be seen as a reason to decline a DCD liver for trans-
plantation after sequential hypothermic and normothermic MP
[49]. Therefore, the combination of different MP techniques may
become a critical strategy to further improve organ preservation
and resuscitation.

Due to its low cost and high convenience, SCS has been the
mainstay of organ preservation for the past 40 years [50]. More
recently, the use of MP has been revisited with renewed enthusi-
asm because of better bioengineering designs and improved cost-
effectiveness. A wide array of strategies has now been explored
for ex vivo MP [6], and a number of clinical trials have been inves-
tigating the efficacy of these strategies [51].

With the increasing use of ECD liver grafts, there is an opportu-
nity to extend the role of MP, beyond assessment and logistics, to
reconditioning and repairing allografts. A wide array of potential
strategies has been investigated [37,40]. Here, we propose the
‘‘MP Plus” terminology, combining MP with strategies aimed at
repairing, reconditioning, and optimizing ECD grafts prior to trans-
plantation. The platform of ‘‘MP Plus” aims to maintain the organ
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under a specific physiological environment by circulating a partic-
ular perfusate through the organ to ① prevent or attenuate organ
injury resulting from ex vivo preservation and ② better preserve
the organ and recover or even regenerate ECD grafts initially
unsuitable for transplantation, thereby allowing expansion of the
liver donor pool.

During the ‘‘MP Plus” process, a number of physical parameters
are important because they affect organ quality: ① temperature;
② oxygenation; ③ filtration; ④ flow velocity; ⑤ perfusion pres-
sure; ⑥ preservation of both arterial or venous circulation path-
ways and flow directions; and ⑦ liver movement [52]. To date,
several companies and laboratories have developed ex vivo liver
graft perfusion platforms, including the TransMedics Organ Care
System (USA), OrganOx Metra (UK), XVIVO Organ Assist (Nether-
lands), and LifePort Machine (Switzerland) [6,27,52]. By designing
a perfusion technology developed by a group of surgeons, biolo-
gists and engineers may enable the maintenance of injured human
livers in a functional state for a long-time ex vivo and improve graft
function [52].

At the 2020 International Liver Transplant Society (ILTS) MP
Conference, it has been proposed that investigators should concen-
trate more on the prepublication of established study protocols
and trials in ECD grafts and focus on clinical outcomes rather than
on laboratory values as primary endpoints [53]. For ECD allografts,
‘‘MP Plus” may play a role beyond organ preservation, namely,
identifying different pathophysiological processes and interfering
with them to attenuate distinct situations. Examples of such strate-
gies include defatting agents, microcirculation regulators, anti-IRI
agents, anti-inflammatory agents, stem or progenitor cell thera-
pies, gene and virus depletion therapies, and, last but not least,
immunomodulation (Table 1 [54–87]). To achieve these goals,
‘‘MP Plus” will depend on the modification of the respective per-
fusates by the addition of beneficial agents or substances, elimina-
tion of harmful waste products, and optimization of bioengineering
technologies when designing perfusion machines and delivery
methods (Fig. 2).
4. ‘‘MP Plus’’ for ECD liver grafts

4.1. MP plus vascular therapy

Fat-laden hepatocytes are thought to cause compression of
hepatic sinusoids with resultant damage to hepatic microcircula-
tion. Animal models and human studies have both demonstrated
that peribiliary vascular injury as a result of microthrombi is more
prominent in DCD and may be the pathophysiological process that
underpins the increased cholangiopathy associated with DCD
grafts. These phenomena may also increase IRI [88,89]. NMP offers
an opportunity to modulate and improve the microcirculation in
grafts prior to transplantation. The parameters used for MP are
intimately related to the microcirculation and vascular resistance
changes during NMP and can be readily modified by a range of
parameters, including temperature. Novel approaches to NMP,
including hyperthermic MP (>38 �C), have been proposed as a
method to induce vasodilation, increase aerobic metabolism, and
induce the production of protective molecules, such as heat shock
proteins [54] (Table 1).

In addition to the modifiable parameters used for MP, exoge-
nous vasodilators have also been proposed as a therapeutic strat-
egy to improve steatotic liver function. The efficacy of improving
graft function has been explored in the context of LT. Historically,
some of these agents have been applied to SCS preservation solu-
tions, but NMP now offers a novel approach to the administration
of these agents. Examples include pentoxifylline (PTX) and carvedi-
lol (CVD). PTX is a methylxanthine phosphodiesterase inhibitor
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that displays vasodilating properties in peripheral blood vessels,
particularly in hepatic blood vessels [90]. Arnault et al. [55] added
PTX to University of Wisconsin (UW) solution during SCS of iso-
lated fatty rat livers; PTX significantly reduced vascular resistance
and peliosis at the end of perfusion (Table 1). CVD is an adrenergic-
blocking medication used to treat hypertension and cardiac
ischemic disorders [91]. Ben Mosbah et al. [56] examined the effect
of CVD in UW solution on the preservation of rat steatotic livers
and demonstrated changes in vascular resistance and perfusion
flow rates when livers were reperfused ex vivo (Table 1).

The presence of microthrombi has led authors to explore the
use of thrombolytic therapies before naïvemplantation in DCD liver
grafts [92]. Concerns exist about the use of thrombolytic therapies
persisting or being transferred into the recipient; however, MP
provides an opportunity to utilize the therapeutic benefit of such
therapies while ensuring that agents have been metabolized or
removed from the perfusate prior to transplantation and therefore
minimizing any risk to the recipient. More recently, the efficacy of
potent vasodilators has been examined in the setting of MP. Pros-
taglandin E1 (PGE1) combined with a short oxygenated warm per-
fusion of the liver graft from uncontrolled DCD resulted in
improved liver function and decreased necrosis or apoptosis of
hepatocytes [57,93] (Table 1). Epoprostenol is a prostacyclin ana-
log and a potent vasodilator and inhibitor of platelet aggregation.
In a porcine model of NMP, treatment with epoprostenol resulted
in significantly lower serum levels of aspartate transaminase
(AST), alanine aminotransferase (ALT), and lactate dehydrogenase
(LDH), and higher bile production [58] (Table 1). Echeverri et al.
[59] applied endothelin-1 antagonist BQ123, epoprostenol, and
calcium channel antagonist verapamil in porcine DCD livers with
NMP. Hepatic artery flow was significantly higher and AST levels
were significantly lower in the BQ123 and verapamil groups than
in the epoprostenol group (Table 1).

The complex pathophysiology observed in steatotic and DCD
liver grafts may require an approach combining several of the
abovementioned ‘‘therapeutic” strategies, such as vascular regula-
tors, vasodilators, or thrombolytic therapies. Nitric oxide has also
been shown to modulate hepatic microcirculation in a rat model
of hepatic steatosis [94]. Nagai et al. [95] demonstrated its efficacy
when insufflating grafts in combination with oxygenation via the
suprahepatic vena cava during SCS. This strategy improved the
microcirculation and portal venous flow after LT. Our group
showed that surface conjugation of an anti-CD31 antibody
enhanced the targeting of nanoparticles to graft endothelial cells
of human kidneys undergoing NMP and successfully prevented
IRI of endothelial cells [96]. Similarly, it has been suggested that
these agents delivered during ‘‘MP Plus” of liver grafts could also
exert a protective effect, and several groups are now working on
this idea [97].

4.2. MP plus defatting therapy

Strategies to reduce intracellular hepatocyte triglycerides (TGs)
have focused on either increasing the mobilization of intracellular
TG stores and upregulating the oxidation of fatty acids (FAs) or
upregulating cellular export. Cytoplasmic lipases are central to ini-
tiating the mobilization of intracellular TG stores and the conver-
sion of TG into FA and glycerol. Adipose triglyceride lipase
(ATGL) is considered to be the rate-limiting step in intracellular
hepatocyte lipolysis; however, other potential pathways for
upregulating FA catabolism exist. FAs have multiple intracellular
functions, but one is as a ligand for nuclear receptors, upregulating
the transcription of enzymes related to FA catabolism. Exploiting
this function of fAs to increase their catabolism may be one such
approach. Several drugs have been reported to reduce hepatic
steatosis by elevating the level of intrahepatocellular lipid



Table 1
Main modalities and advantages of different ‘‘MP Plus” strategies.

ECD MP Plus Advantages

MP plus vascular therapy
DCD & steatosis NMP Hyperthermy [54] Induce vasodilation, increase aerobic metabolism, induce protective

molecules
Steatosis Pentoxifylline [55], carvedilol [56] Reduce vascular resistance, reduce peliosis at the end of perfusion
DCD Prostaglandin E1 [57], epoprostenol [58],

BQ123/verapamil [59]
Improve liver function, decrease hepatocytes death

MP plus defatting therapy
Steatosis NMP GW7647, GW501516, hypericin,

scoparone, forskolin, and visfatin [60]
A 65% decrease of hepatocyte triglyceride content after three hours

Polyphenols, hypericin, scoparone,
forskolin, and visfatin [61]

Defat steatotic rat livers with an optimized safety and reduced
hepatotoxicity

L-carnitine [62,63] Reduce liver fat content both in vitro and in discarded liver grafts
GDNF-loaded nanoparticles [64] Reduction of fat in high-fat diet-fed mice livers
Filters Physically remove solubilized fats (not applicable yet)

MP plus anti-aging therapy
Elderly — Irisin [65] Improve autophagy (tested in vitro)

NMP Senolytics (dasatinib, quercetin,
navitoclax, and HSP90 inhibitors) [66]

Remove the aggravating effects when elderly liver grafts undergo the
process of transplantation

MP plus anti-infectious therapy
Bacterial infections NMP or HMP Antibiotics [67,68] Reduce bacterial counts, reduce endotoxin levels, improve organ

function (applied in kidney and lung)
Sub-NMP (33 �C) Anti-inflammatory strategies (alprostadil,

n-acetylcysteine, carbon monoxide, and
sevoflurane) [69]

Decrease IL-6 and TNF-a, increase IL-10

NMP Antimicrobial agents [70] Prolong the liver graft preservation time
Antimicrobial agent (cefuroxime) [71] Successful transplantation of septic donor livers

CMV infection NMP Immunotoxin (F49A-FTP) [72] Reduce human CMV reactivation in recipients (applied in the lung)
HCV infection NMP Miravirsen [73] Optimize liver function

HMP Methylene blue [74] Reduce infectious HCV particles and transmission (applied in the
kidney)

NMP Germicidal light or ultraviolet C
irradiation [75]

Inactivate HCV in the perfusate (applied in the lung)

MP plus liver splitting
Split liver grafts HOPE PEG35 and glutathione [76] Reduce IRI and improve liver splitting

D-HOPE [77] Reduce the cold ischemia time, improve transplant logistics, prolong
the preservation time

NMP Ferroptosis regulator (deferoxamine) [78] Decrease intrahepatic iron, HO-1, HIFa, AST, and ALT
Albumin, bicarbonate
methylprednisolone, heparin, antibiotics,
ursodeoxycholic acid, parenteral nutrition,
lipids, and carnitine [79]

Long-term preservation of human hemi-livers, potential for liver
regeneration ex vivo

MP plus cell therapy
All ECD NMP MSCs [80] Inhibit inflammatory reactions, alleviate rejection
DCD MSCs [81] Improve liver function, reduce hepatocyte apoptosis, repair

mitochondrial damage
Discarded human livers MAPCs [82] Half of the grafts met the established criteria for organ viability

Primary cholangiocyte organoids [83] Repair bile duct injury
MP plus gene therapy
All ECD NMP or HMP siRNA targeting Fas receptor and p53 gene

[84]
Reduce hepatocyte apoptosis

HOPE siRNA [85] A proof-of-concept study
MP plus immunotherapy
All ECD NMP Bioengineering filtration [86] Remove passenger leukocytes

MSC-derived extracellular vesicles [87] Modulate the immune microenvironment

HSP90: heat-shock protein 90; GDNF: glial cell line-derived neurotrophic factor; MSC: mesenchymal stem cell; MAPC: multipotent adult progenitor cell; HO-1: heme
oxygenase 1; TNF-a: tumor necrosis factor-a; IL-6: interleukin-6; PEGH35: polyethylene glycol 35; HIFa: hypoxia inducible factor a; AST: aspartate transaminase;
ALT: alanine aminotransferase; siRNA: small interfering RNA.
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catabolism [98]. Fig. 3 summarizes the mechanisms of intrahepato-
cellular lipid metabolism and agents that have been used for defat-
ting, as well as the potential targets for future investigation.

Nagrath et al. [60] used isolated rat hepatocytes to demonstrate
that a combination of the peroxisome proliferator-activated recep-
tor a (PPARa) ligand GW7647, the PPARd ligand GW501516, the
pregnane X receptor (PXR) ligand hypericin, the constitutive
androstane receptor (CAR) ligand scoparone, the glucagon mimetic
and cyclic adenosine monophosphate (cAMP) activator forskolin,
and the insulin-mimetic adipokine visfatin could be used to signifi-
cantly reduce the intracellular fat content by 24% after 24 hours
(Table 1). The authors then examined the efficacy of this combina-
tion by delivering these substances to ex vivo normothermically
33
perfused steatotic livers and demonstrated a 65% decrease in the
intrahepatocellular TG content after tthree hours of perfusion.
Recently, Xu et al. [61] from Washington University developed a
novel multidrug combination by replacing GW compounds with
two polyphenols and successfully defatted steatotic rat livers via
activation of the adenosine 50-monophosphate-activated protein
kinase (AMPK) pathway with optimized safety and reduced hepa-
totoxicity during NMP (Table 1). The efficacy of other agents in
manipulating fat metabolism has also been explored. Rapamycin,
a specific inhibitor of the kinase mammalian target of rapamycin
(mTOR), has been shown to enhance FA oxidation, suppress lipoge-
nesis, and induce TG secretion and macroautophagy [99,100].
Necrosulfonamide, an inhibitor of the mixed lineage kinase



Fig. 2. Major types of ECD liver grafts and the potential role of ‘‘MP Plus.”

Fig. 3. Mechanisms of intrahepatocellular lipid metabolism and defatting agents. cAMP: cyclic adenosine monophosphate; FFA: free fatty acid; KB: ketone bodies; LXR:
liver X receptor; RXR: retinoid X receptor; PXR: pregnane X receptor; PPAR: peroxisome proliferator-activated receptor; CAR: constitutive androstane receptor; NSAIDs:
nonsteroidal anti-inflammatory drugs; IGF1: insulin-like growth factor 1; EGF: epidermal growth factor. Red solid line: directly functioning; red dotted line: indirectly
functioning; green solid line: agents not studied yet.
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domain, regulates insulin sensitivity and TG secretion in the liver
[101]. Aoudjehane et al. [102] combined rapamycin and necrosul-
fonamide with the agents previously reported by Nagrath et al.
[60] to form a new defatting cocktail. This was efficacious in
significantly reducing the hepatocyte TG content within 24 hours
in primary human hepatocytes in vitro.

The augmentation of mitochondrial b-oxidation of FAs has led
investigators to study the role of L-carnitine in defatting strategies.
This amino acid has been demonstrated to successfully reduce liver
fat content both in vitro and in discarded liver grafts with ex vivo
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NMP [62,63] (Table 1). The translation of the encouraging findings
in animal models to human hepatocytes and livers is yet to be
observed in several key areas and will require further investigation,
including a more thorough characterization of the precise mecha-
nism of action of the agents used in animal models. The use of fil-
ters to remove solubilized fats while on NMP would be appealing
but is also yet to be demonstrated. Nevertheless, the spontaneous
reversal of steatosis in the liver graft after transplantation (from
30%–60% to < 10% within 12 days) has been reported, demonstrat-
ing the potential for relatively rapid modification of the fat content
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of livers in vivo [103,104]. Therefore, a prolonged preservation time
is also important, which could provide a sufficient duration of time
for any strategies of ‘‘MP Plus” to recondition organs ex vivo.

Manipulation of growth factors or expression of genes involved
in lipogenesis and lipolysis might provide an alternative approach
for reconditioning steatotic grafts. Overexpression of the growth
factor glial cell line-derived neurotrophic factor (GDNF) in mice
results in resistance to weight gain and hepatic steatosis induced
by a high-fat diet (HFD) [105]. The overexpression of GDNF was
associated with suppressed expression of PPARc and increased
expression of PPARa and b-adrenergic receptors, with an accompa-
nying reduction in lipogenesis and increased lipolysis and lipid b
oxidation [105–107]. Furthermore, exogenous administration of
GDNF-loaded nanoparticles is protective against steatosis in
wild-type mice fed a HFD. Efficacy has also been demonstrated in
ex vivo perfusion models with a significant reduction in fat content
in HFD mouse livers compared to controls [64] (Table 1).

4.3. MP plus anti-aging therapy

There is also some evidence to suggest a protective effect of
NMP in elderly liver grafts, but whether this is simply related to
minimizing cold ischemia rather than an alternative mechanism
is unclear [108]. Therefore, excellent outcomes could also be
achieved with elderly donors, and there is virtually no upper age
limit. The challenge is how to optimize selection, procurement,
and matching to guarantee better results with liver grafts from
older donors.

One of the distinctive signs of older donor liver grafts is the
process of autophagy. Wang et al. [109] investigated the role of
autophagy in IRI via analysis of autophagy-related proteins (Agt4B)
both in vivo and in vitro and confirmed that loss of Atg4B in the livers
of old mice increases sensitivity to IRI, while increasing autophagy
might ameliorate liver damage and restore mitochondrial function.
Moreover, by applying transcriptomic profiling and protein analysis
to evaluate temporal changes in gene expression during NMP,
Ohman et al. [110] found that the activation of autophagy in dis-
carded liverswas associatedwith improvedhepatocellular function.
Hence,modulationofautophagymightbeanother therapeutic target
for rehabilitating the function of "untransplantable" older livers.
Irisin has been tested in aged hepatocytes and improves autophagy
by increasing telomerase activity in hepatic IRI, which might be
combined with MP to recondition elderly liver grafts [65] (Table 1).

Cellular senescence plays another important role in age-related
and chronic liver disease, which may cause harm to both hepato-
cytes and cholangiocytes [111,112]. Cellular senescence in elderly
liver grafts may limit the prognosis after LT, and therapies target-
ing senescence are attracting increasing interest. Senolytics are
drugs that selectively target senescent cells and induce apoptosis,
which could remove the aggravating effects when elderly liver
grafts undergo transplantation [113]. Several senolytics, such as
dasatinib, quercetin, navitoclax, and heat-shock protein 90 inhibi-
tors are currently being investigated, and some are already being
tested in clinical trials [66] (Table 1). During NMP, senolytics can
be administered to the donor and directly target the isolated liver,
which enables promising effects with a lower risk of side effects.
However, no experimental or clinical research is investigating the
combination of ‘‘MP Plus” with senolytics, and further studies are
needed to clarify its efficacy.

4.4. MP plus anti-infectious therapy

Donor bacterial infection represents the most common risk of
donor-derived disease transmission (approximately 30%), which
was reported to cause nearly 30% of recipient deaths attributable
to donor-derived bacterial infections [114]. Donor bacterial
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infection affects organ quality, especially infections by
multidrug-resistant bacteria, which may cause severe sepsis and
increase the hospital stay, morbidity, and mortality after trans-
plantation [115]. However, recent reports demonstrated that LT
from donor presenting, even multidrug-resistant Acinetobacter
baumannii, bacterial infections could still achieve comparable out-
comes [116,117]. Potential donors with positive bacterial infec-
tions should therefore not be excluded for organ transplantation.
The combination of NMP or HMP with antibiotics has been shown
in both rat kidney and human lung transplantation to significantly
reduce bacterial counts and endotoxin levels and thus improve
organ function [67,68] (Table 1). In a porcine transplantation study,
liver grafts under NMP with anti-inflammatory strategies
(alprostadil, n-acetylcysteine, carbon monoxide, sevoflurane, and
subnormothermic temperature (33 �C)) significantly decreased
the inflammatory cytokines interleukin (IL)-6 and tumor necrosis
factor (TNF)-a and increased the anti-inflammatory cytokine
IL-10 after transplantation [69] (Table 1). Recently, Clavien et al.
[70] reported their experience of treating successfully ex situ with
antimicrobial agents during NMP for three days, a human liver
from a donor presenting sepsis (Table 1). Similarly, another
successful transplantation of septic donor liver was performed in
Austria using the combination of NMP and an antimicrobial regi-
men (cefuroxime) [71] (Table 1). These case reports show that
well-designed clinical studies of ‘‘MP Plus” in attenuating organ
inflammation and recipient infection are needed to further confirm
the role of MP in improving posttransplant outcomes.

Viral infections represent a major global public health problem
and economic burden [118]. Despite the use of CMV antiviral pro-
phylaxis for the high-risk CMV combination (seropositive donor to
seronegative recipient), delayed-onset CMV infection or disease
still occurs [119]. CMV has a seroprevalence in the adult popula-
tion ranging from 30% to 100% according to age and geographical
and socioeconomic factors [120]. The risk is greatest innaïvee
recipients of organs from CMV-infected donors (D+/R�
transplants), and seropositive recipients (D±/R+) have an inter-
mediate risk [121]. The D�/R� pair has the lowest infectious risk.
To date, only in human lung transplantation has it been shown that
ex vivo perfusion with immunotoxin (F49A-FTP) significantly
reduces CMV reactivation in recipients [72] (Table 1). This demon-
strates again that ‘‘MP Plus” may provide a platform for targeting
and killing latent CMV in a donor organ with promising results.

With the development of DAA antiviral agents, HCV-positive
liver grafts have been increasingly utilized in LT [122]. Importantly,
‘‘MP Plus” also plays a critical role in modifying these grafts.
Goldaracena et al. [73] from the Toronto General Hospital investi-
gated the effect of miravirsen (a locked nucleic acid oligonu-
cleotide that sequesters micro-RNA (miR)-122 and inhibits HCV
replication) in a pig LT model under NMP, and drug uptake
improved and optimized the outcome of LT (Table 1). Helfritz
et al. [74] demonstrated that the combination of methylene blue
with HMP reduced the load of HCV particles as well as their trans-
mission during kidney transplantation (Table 1). Germicidal light
or ultraviolet C irradiation during NMP has also been shown to suc-
cessfully inactivate HCV in the perfusate in a short period in lung
transplantation [75,123] (Table 1). All these novel approaches
might be applied to treat HCV infection in liver grafts under MP.
HBV is more complex than HCV, and complete clearance after
infection is difficult to achieve with current therapies due to its
integration in the DNA strain. To date, no study has focused on mit-
igating HBV infection of liver grafts under ‘‘MP Plus” [124].

4.5. MP plus liver splitting

HOPE has also been used in the preservation and repair of split
liver grafts with encouraging results [125,126]. In 2022, the use of
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a novel preservation solution with polyethylene glycol 35 (PEG35)
and an increased concentration of glutathione combined with
HOPE perfusion reduced the deleterious effects of IRI and improved
the benefits of ex vivo liver splitting [76] (Table 1). Thorne et al.
[127] showed that D-HOPE in a left lateral segment and extended
right lobe liver split procedure reduced the cold ischemia time
(CIT) and improved transplant logistics. Spada et al. [77] reported
the first clinical case of D-HOPE in SLT, confirming the preclinical
results on the feasibility of splitting livers during MP (Table 1). In
addition to graft reconditioning, D-HOPE also allowed prolonged
preservation time, an important aspect of the technique because
it facilitated logistics for allocation and transplantation into two
recipients. A prospective, pseudorandomized, dual-arm stage II
clinical trial was designed to determine the safety and feasibility
of prolonged D-HOPE (DHOPE-PRO) [128]. These investigations
suggest that MP may be a valuable adjunct to expand the donor
pool and improve the utilization of SLT in the future.

Zhang et al. [129] first compared NMP with SCS in preserving
and transplanting split porcine livers. Based on emerging evidence
that defines ferroptosis (iron-regulated hepatocellular death) as an
IRI driver, Nazzal et al. [78] assessed whether the ferroptosis regu-
lator deferoxamine in the NMP of split livers could modulate intra-
hepatic injury after ex vivo preservation (Table 1). Significantly
decreased intrahepatic iron, heme oxygenase-1 (HO-1), hypoxia
inducible factor a (HIFa), AST, and ALT were observed. This pro-
vides a preliminary proof of concept for the potential role of
NMP plus ferroptosis regulators in reconditioning split liver grafts.

Recently, the use of NMP for the long-term preservation of 21
human hemilivers was investigated following studies demonstrat-
ing the protective effects of NMP on partial swine livers [79]
(Table 1). Fourteen right and seven left hemilivers recovered from
patients undergoing anatomic hepatectomies were perfused with a
blood-based perfusate containing albumin, bicarbonates, methyl-
prednisolone, heparin, antibiotics, ursodeoxycholic acid, parenteral
nutrition, lipids, and carnitine. Ten of 21 hemi-livers were perfused
ex situwith a standardized perfusion protocol for a week. Histology
from biopsies after seven days of perfusion revealed no relevant
necrosis or apoptosis. Furthermore, cellular proliferation was also
demonstrated, indicating a regenerative capacity of partial human
livers during prolonged ex situ perfusion. Moreover, a prolonged
period of preservation, potentially augmented with the addition
of growth factors or promoting genes to accelerate this process,
provides an opportunity for significant regeneration ex vivo [97].

In the future, split liver grafts may constitute a larger propor-
tion of the donor pool, and improved recondition and regeneration
with ‘‘MP Plus” may help investigators realize this potentially
underutilized donor pool.

4.6. MP plus cell therapy

Mesenchymal stem cells (MSCs) and multipotent adult progeni-
tor cells (MAPCs) are immunomodulatory cells that have also been
shown to have therapeutic effects on IRI [130,131]. MSCs derived
from adipose tissues in a rat orthotopic LT model were shown to
inhibit inflammatory reactions and significantly alleviate acute
rejection following orthotopic LT [80]. Verstegen et al. [81] first
reported ex vivo delivery of MSCs to liver grafts during MP, which
could also inhibit inflammatory reactions and alleviate rejection
(Table 1).

MSCs and MAPCs are two major types of cell therapies and offer
a potential therapeutic strategy to recondition or recover marginal
liver grafts prior to transplantation. Yang et al. [132] compared
NMP plus MSCs with NMP and SCS in a rat DCD model. The addi-
tion of MSCs significantly improves liver function and liver histo-
logical damage reduced hepatocyte apoptosis and repaired
hepatocyte mitochondrial damage. Potential mechanisms that
36
have been proposed include the reduction of ferroptosis in hepato-
cytes [133] and the inhibition of the c-Jun N-terminal kinase–nu-
clear factor kappa-B (JNK–NF-jB) pathway reducing oxidative
stress and promoting AMPK activation thereby reducing mitochon-
drial damage and increasing mitochondrial function [134]. Laing
et al. [82] directly delivered MAPCs to six discarded human ECD
livers under NMP (Table 1). After NMP plus MAPC delivery, half
of the grafts met the established criteria for organ viability. Analy-
sis of cytokines and chemokines in perfusates identified nine tar-
gets (IL-1b, IL-4, IL-5, IL-6, IL-8, IL-10, monocyte chemotactic
protein-1 (MCP-1), granulocyte–macrophage colony stimulating
factor (GM-CSF), and stromal cell derived factor-1a (SDF-1a))
related to the presence of MAPCs. Proteomic analysis revealed
259 unique proteins that have strong links to MAPCs and func-
tional enrichment analysis demonstrated their immunomodula-
tory potential.

Another approach to mitigate biliary tract injury is the use of
organoids. It has been demonstrated that primary cholangiocyte
organoids can be engrafted into a discarded human liver during
ex situ NMP and express key biliary markers (keratin 7 (KRT7), ker-
atin 19 (KRT19), cystic fibrosis transmembrane conductance regu-
lator (CFTR), and gamma glutamyl transpeptidase (GGT)) [83]
(Table 1). Moreover, Roos et al. [135] recently reported the con-
struction of human branching cholangiocyte organoids that could
self-organize into complex tubular structures resembling the intra-
hepatic bile duct architecture. Although not yet applied during the
process of LT, it can feasibly be combined with MP to further
expand its utilization by reconditioning ECD liver grafts ex vivo
and finally improving posttransplant outcomes.

The use of MP to enable the delivery of MSCs, MAPCs, or orga-
noids to recover otherwise marginal or nontransplantable organs
is appealing. Further work is needed to explore the therapeutic
potential of other types of primary or stem cells, hematopoietic
stem cells, and induced pluripotent stem cells for the regeneration
of marginal grafts. Immune cell therapies (such as chimeric antigen
receptor T-cell therapy and regulatory T-cell therapy) are also
emerging as novel therapeutic strategies and can potentially be
combined with MP in reconditioning or recovering ECD liver grafts
[136].

4.7. MP plus gene therapy

Utilization of gene modulation agents in MP is also promising
because of the targeted delivery to specific organs. Exogenous
administration of small interfering RNA (siRNA) has been reported
to attenuate the downstream effects of IRI and apoptosis. The first
successful administration of siRNA during ex vivoMP in a rat model
was performed by Gilloly et al. [137] under both normothermic
and hypothermic conditions. By targeting the Fas receptor and
p53 gene, whose activation contributes to IRI through a proapop-
totic pathway, the rat liver was successfully perfused in a stable
state [84] (Table 1). Other targets, including V-rel reticuloendothe-
lioliosis viral oncogene homolog B (RelB), TNF-a, and proapoptotic
caspases, have been demonstrated to have a significant effect on
inducing IRI during LT, and silencing these genes prior to implan-
tation might ameliorate IRI after blood reperfusion [138]. Recently,
Bonaccorsi-Riani et al. [85] reported a proof-of-concept study that
delivering siRNA compounds during HOPE can modulate organ
function in a rat liver transplant model but needed a better design
and appropriate doses of siRNA compounds (Table 1). As most ECD
liver grafts are more susceptible to IRI, MP could offer great poten-
tial as an ideal delivery method for gene modulations. Many genes
or molecules, studied in vitro or in vivo, have been shown to have a
promising effect on reconditioning ECD liver grafts, and future
studies are needed to improve the clinical applicability of ‘‘MP
Plus” in mediating gene modulation ex vivo.
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4.8. MP plus immunotherapy

During the process of infection, the intrahepatic inflammatory
response and immunogenicity are altered. MP prior to transplanta-
tion makes it possible to modulate the immunogenicity of the
graft, resulting in decreases in IRI and the innate inflammatory
response, especially in ECD liver grafts. In a human LT clinical trial,
HMP significantly reduced proinflammatory cytokine expression,
relieving the downstream activation of adhesion molecules and
migration of leukocytes, including neutrophils and macrophages,
when compared to SCS controls [139]. In rat DCD liver grafts,
Lauschke et al. [140] found that 24 hours of HMP significantly
decreased human leukocyte antigen (HLA) class II antigen expres-
sion on postsinusoidal venular endothelium compared to SCS and
improved the preservation of predamaged donor livers with higher
immunogenicity.

Immunomodulation of grafts may shift the intrahepatic
immune response from inflammatory to tolerogenic during MP, a
condition that may reduce immune activation after transplantation
of an infected liver graft. The combination of NMP and bioengi-
neering filters successfully eliminates passenger leukocytes in the
graft, leading to a significant reduction in recipient T-cell infiltra-
tion and, consequently, a decreased incidence of acute rejection
[86] (Table 1). Furthermore, by adding MSC-derived extracellular
vesicles in NMP, donor grafts exhibit milder posttransplant IRI
but facilitate enhanced rehabilitation [87] (Table 1). These benefits
have been achieved through the attenuation of immune cell activa-
tion and the preservation of endothelial barrier integrity, thus con-
tributing to improved outcomes. Another promising approach to
reduce inflammation and decrease the immune response during
MP is the utilization of inhibitory RNAs, which target donor organ
inflammation-related genes and decrease the immune response in
recipients after LT [84]. All this information already shows that it
will be possible to treat the organ during ex vivo perfusion to
decrease immune activation and recondition immunologically
infected liver grafts.
5. Conclusions

With an increasing global demand for LT, improving the utiliza-
tion of ECD liver grafts is one approach to mitigate organ shortages.
MP has potential roles in viability assessment, logistics, recovery,
and reconditioning, especially of such organs at risk. During the
last decade, there has been increasing interest in MP of donor liv-
ers, and considerable advances have been made in both experi-
mental and clinical research in this area. Some of this work is
moving beyond viability assessment and logistics toward the
reconditioning of organs. If these strategies demonstrate efficacy,
they will have a profound impact on the number of available grafts
for transplantation and will also allow the introduction of a new
potential pool of organs. MP will lead to a redefinition of what
was previously considered to be an ‘‘untransplantable” allograft.

MP with all its different modalities, such as HMP, NMP, HOPE,
D-HOPE, and sequential D-HOPE combined with NMP, has already
been investigated thoroughly to achieve better organ preservation
and assessment. ‘‘MP Plus,” a term newly proposed in this review,
denotes novel strategies combining different MP modalities and
various allograft interventions and manipulations, all designed to
restore organ function and to improve the regeneration of different
kinds of ECD liver grafts. The wide variety of approaches, including
vascular, defatting, anti-aging, anti-infectious, cell or gene thera-
pies, as well as immunotherapy, have already been reported to
highlight the opportunities and challenges in this fast-developing
area of LT.
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Continued investigations with translation from small and large
animal models through declined human livers are warranted to
ensure that these novel concepts and strategies will finally move
from bench to bedside. Importantly, well-designed clinical studies,
including randomized controlled trials (RCTs) with clearly formu-
lated composite endpoints, must be conducted to obtain a higher
level of clinical evidence. Such studies are also necessary to avoid
an unjustified ‘‘override” of these costly ex situ procedures.
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