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The Advanced Geosynchronous Radiation Imager (AGRI) is a mission-critical instrument for the Fengyun
series of satellites. AGRI acquires full-disk images every 15 min and views East Asia every 5 min through
14 spectral bands, enabling the detection of highly variable aerosol optical depth (AOD). Quantitative
retrieval of AOD has hitherto been challenging, especially over land. In this study, an AOD retrieval algo-
rithm is proposed that combines deep learning and transfer learning. The algorithm uses core concepts
from both the Dark Target (DT) and Deep Blue (DB) algorithms to select features for the machine-
learning (ML) algorithm, allowing for AOD retrieval at 550 nm over both dark and bright surfaces. The
algorithm consists of two steps:① A baseline deep neural network (DNN) with skip connections is devel-
oped using 10 min Advanced Himawari Imager (AHI) AODs as the target variable, and ② sunphotometer
AODs from 89 ground-based stations are used to fine-tune the DNN parameters. Out-of-station validation
shows that the retrieved AOD attains high accuracy, characterized by a coefficient of determination (R2)
of 0.70, a mean bias error (MBE) of 0.03, and a percentage of data within the expected error (EE) of 70.7%.
A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm, as well as the sur-
face reflectance at 650 nm, are the two largest sources of uncertainty impacting the retrieval. In a case
study of monitoring an extreme aerosol event, the AGRI AOD is found to be able to capture the detailed
temporal evolution of the event. This work demonstrates the superiority of the transfer-learning tech-
nique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme
pollution events.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Detailed information on aerosols is essential for a broad range
of geoscience domains, such as the Earth’s radiation balance
[1,2], climate change [3], air quality [4,5], and human health [6],
to name just a few. Aerosol optical depth (AOD), which is defined
as the vertical integral of the extinction coefficient of atmospheric
aerosols from the ground to the top of the atmosphere (TOA), is a
widely used and essential optical parameter for characterizing
atmospheric aerosols. In parallel, ground-based sunphotometer
remote sensing is widely regarded as the most accurate method
for obtaining AOD. Sunphotometer AODs are thus often used as
ground truth to validate a wide variety of aerosol products from
satellite remote sensing, chemical transport models, and
-AGRI:
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atmospheric reanalysis [7–11]. Development of the Aerosol
Robotic Network (AERONET) began more than 25 years ago, and
the network has grown to include hundreds of sunphotometric
stations worldwide [12,13]. There are also a few regional sunpho-
tometer networks in Asia, such as the SKYradiometer NETwork
(SKYNET) [14]. In China, three independent sunphotometer
networks—namely, the Chinese Aerosol Research Network
(CARSNET) [15], the Chinese Sun Hazemeter Network now known
as the Campaign on Atmospheric Aerosol Research network of
China (CARE-China) [16], and the Sun–Sky Radiometer Observation
Network (SONET) [17]—have been established to meet the increas-
ing demand for research-grade aerosol data. In addition, a few
stations from the international AERONET and SKYNET networks
operate throughout China. All these networks play a vital role in
characterizing aerosol properties over China. However, the high
spatiotemporal variability of aerosols cannot be fully captured by
these sparsely distributed sunphotometer instruments. Hence,
satellite remote sensing is greatly needed to provide AOD products
with high spatiotemporal coverage.

Satellite remote sensing, which mainly refers to the sensing
provided by polar-orbiting and geostationary satellites, has been
ubiquitously used to acquire aerosol properties spatiotemporally.
Polar orbiting satellites can detect global AOD but have relatively
long revisit periods. In comparison, geostationary satellites have
the advantage of providing high-frequency aerosol observations
(about 5–15 min) at good spatial resolutions. Current sensors of
that kind include: the Spinning Enhanced Visible and Infrared Ima-
ger onboard Meteosat Second Generation from the European Orga-
nization for the Exploitation of Meteorological Satellites [18]; the
Advanced Baseline Imager (ABI) of Geostationary Operational Envi-
ronmental Satellites (GOES)-16/171 from the National Oceanic and
Atmospheric Administration (NOAA); the Advanced Himawari Ima-
ger (AHI) onboard Himawari-8 and its successor,2 Himawari-9, from
the Japan Meteorological Agency [19]; and the Geostationary Ocean
Color Imager II (GOCI-II) of the Geostationary Korea Multi-Purpose
Satellite 2B (GEO-KOMPSAT-2B) [20]. Fig. S1 in Appendix A presents
the positions and coverages of the six geostationary satellites that
cover China wholly or partially—namely, Meteosat-9 (also known
as the Indian Ocean Data Coverage, IODC) at 45.5�E, Himawari-8/9
at 140.7�E, GEO-KOMPSAT-2B at 128�E, Fengyun-4A (FY-4A) at
104.7�E, and Fengyun-4B (FY-4B) at 133�E. Although Himawari-8/9
and IODC cover parts of China, none of these satellites can provide
data for the entire country with a good field of view. In contrast,
FY-4A and FY-4B can now provide full coverage and high-
frequency measurements over China and neighboring countries
[21]. These respectively constitute the first and second instance of
the new generation of Chinese geostationary meteorological satel-
lites. Both satellites carry various instruments, including the
Advanced Geosynchronous Radiation Imager (AGRI) sensor, which
is central to the present study and whose capabilities have been
reviewed by Zhang et al. [22].

The most challenging task in passive satellite AOD retrieval over
land is to separate the surface and aerosol contributions from the
reflected radiance that is sensed by spaceborne radiometers. This
is especially true when the surface is highly reflective (e.g., snow
or bright sand) and the AOD signal is low. To address this problem,
researchers have developed various physical schemes, which can
be divided into four main categories: ① The establishment of sur-
face reflectance relationships between the visible and other bands,
such as the Dark Target (DT) method [23]; ② the construction of a
pre-calculated static surface reflectance database, with the Deep
1 Collectively known as ‘‘GOES-R” series.
2 Himawari-9 became Japan Meteorological Agency’s operational satellite on

December 13, 2022, replacing Himawari-8, which was then placed in standby mode.
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Blue (DB) and the enhanced DB algorithm [24–26] as typical exam-
ples; ③ the use of a multi-angle method, as represented by the
multi-angle implementation of atmospheric correction (MAIAC)
[27]; and ④ the use of polarization information, such as the usage
of the Generalized Retrieval of Aerosol and Surface Properties uni-
fied algorithm in Polarization and Directionality of the Earth’s
Reflectances [28]. Attempts have already been made to use the
above algorithms for AOD retrieval from geostationary satellites.
For example, the NOAA GOES-16 ABI AOD over land uses a DT-
based method [29]. In contrast, the operational AHI land aerosol
product, released by the Japan Aerospace Exploration Agency, uses
a DB-type method, where the second lowest reflectance measure-
ment in a month is atmospherically corrected to represent the sur-
face reflectance [30].

Benefiting from the advancement of computer technology,
machine-learning (ML) has rapidly gained great interest within
the remote-sensing field. Critically, ML can help model the com-
plex relationship between satellite-observed TOA reflectance and
surface-based AOD. She et al. [31] utilized a deep neural network
(DNN) model to estimate AOD from AHI, with AOD data from 76
AERONET sites serving as the ground truth. The root mean-
squared error (RMSE) achieved by their model was 0.17, demon-
strating its effectiveness in AOD estimation. Yeom et al. [32]
employed DNN in a similar way but focused on the GOCI sensor
and AERONET AOD data over Northeast Asia. Their validation
results exhibited high accuracy for the DNN-generated AOD when
compared with either traditional support vector regression or ran-
dom forest (RF) models. In contrast to previous works, Kang et al.
[33] introduced channel difference features into a DNN model,
indirectly incorporating surface reflectance information. The coef-
ficient of determination (R2) of 10 fold cross-validation reached
0.93 and 0.92 for a light gradient boosting machine and RF, respec-
tively. Chen et al. [34] directly utilized surface reflectance data
derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) alongside ground-measured AOD to train a convolutional
neural network model. The evaluation demonstrated that approx-
imately 68% of the AOD values fell within the expected error (EE)
range of ± (0.05 + 15%). It should be emphasized that, even though
these studies employed different sensors, methods, and input fea-
tures, they all relied solely upon ground observations, which are
sampled very sparsely with respect to the area over which the
retrieval is required.

Whereas the abovementioned literature leverages observations
from AHI, GOCI, and MODIS, there is no operational AOD product
from AGRI yet, although some attempts have been made. For
example, Jiang et al. [35] developed an algorithm for retrieving
AGRI AOD over land. This algorithm uses a monthly surface reflec-
tance band-ratio database and look-up tables (LUTs) computed by
the Second Simulation of a Satellite Signal in the Solar Spectrum
Vector model to retrieve hourly AOD. The accuracy was reported
to be fairly high, with an R2 of 0.71, RMSE of 0.16, and approxi-
mately 60% of the retrieved AODs within the EE. Xie et al. [36]
developed a multi-channel (MC) algorithm for AGRI over South
Asia. This algorithm assumes that the relationships between the
surface reflectance in different bands remain stable over a period
of 2 weeks. The surface reflectance is derived when aerosol loading
is low and MODIS AOD is used for atmospheric correction. The MC
algorithm is claimed to be applicable to both dark targets and
bright surfaces. In comparison with AERONET AODs, the MC-
retrieved AGRI AOD shows high accuracy, with the RMSE and EE
of the data being 0.16 and 63.71%, respectively. Ding et al. [37]
recently applied the so-called Neural Network AEROsol Retrieval
for Geostationary Satellite (NNAeroG) to the full-disk area of AGRI.
The AOD data from 111 sunphotometer sites (AERONET + SONET)
were used to train the network, and 28 other sites were reserved
for independent validation. The AGRI AOD predicted by NNAeroG
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was found to be consistent with the sunphotometer AOD data
(RMSE = 0.24, R2 = 0.73, EE = 58.7%).

To summarize the advances in satellite AOD retrieval, physical
retrieval methods (e.g., DT or DB) usually require prior knowledge
of aerosol properties, except for the unknown AOD over the area of
interest. A radiative transfer model is run to build a LUT for subse-
quent AOD retrievals. However, the size of the LUT grows exponen-
tially with predefined parameters, and the LUT is usually unique
for each sensor. This means that it is difficult to adapt physical
retrieval methods to new contexts. In addition, the rapid develop-
ment of installed sunphotometer stations is not fully exploited by
physical retrieval methods, because these stations are used only to
characterize aerosol properties or as verification references. In con-
nection with the abovementioned ML-based AOD algorithms, only
sunphotometer-based AODs have been used as targets so far. One
notable pitfall of this approach is that ground-based stations are
still relatively scarce and unevenly distributed, which inevitably
lowers the confidence in AOD retrieval over areas that are not cov-
ered by at least a few stations. Considering the high heterogeneity
of aerosol and surface properties, it seems very improbable that ML
models based on limited training samples can be universal.

Given these problems, the goal of this contribution is to develop
a novel AGRI AOD retrieval algorithm using both deep-learning and
transfer-learning techniques. This innovation includes the follow-
ing three aspects. First, the features of the ML model are selected
based on the core physical concepts of the DT and DB algorithms.
Second, a transfer-learning technique is used to overcome the lim-
itation of training samples. This involves training a model by using
the AHI AOD as a target whose parameters are tuned by using as
many sunphotometer measurements as possible. Since AHI AODs
are used in the process, this algorithm enables synergy between
a physical retrieval algorithm and anMLmethod. Finally, a detailed
sensitivity analysis is performed to discuss potential sources of
error.
2. Data and methods

2.1. AGRI sensor

FY-4A was launched on December 11, 2016, and remains posi-
tioned at a longitude of 104.7�E. It is the first of China’s latest-
generation geostationary meteorological satellites [21,38]. Com-
pared with the instruments that equipped the first generation of
Chinese geostationary satellites (FY-2), the AGRI onboard FY-4A
has significant improvements in several aspects. First, the number
of spectral bands is increased from 5 to 14, providing more refined
spectral information. Second, the snapshot interval for the full-disk
Earth-view images is reduced from 30 to 15 min, while the Central
and Eastern Asia regions are observed every 5 min. This high tem-
poral resolution can help capture high-frequency variations in the
observed processes. Third, AGRI has a higher spatial resolution: 1
km in the visible, 2 km in the near-infrared (IR), and 4 km in the
other IR spectral bands. This facilitates the analysis of small-scale
spatial variations, which is vital to the understanding of the local
aerosols’ characteristics and transport mechanism.

For this study, a subset of the AGRI/FY-4A Level 1 (L1) 4 km
dataset with 5 min temporal resolution was obtained from the
FENGYUN Satellite Data Center3, spanning the full year of 2018.
The cosines of the satellite view zenith angle (CSVA) and solar zenith
angle (CSZA), seven bands of AGRI (470, 650, 825, 1375, 1610,
2250 nm, and 10.7 lm), as well as a few quantities obtained by com-
bining different bands, are taken as features during the ML model
development (details are provided in Section 3). The links of datasets
3 http://data.nsmc.org.cn
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used in this study and the retrieved AGRI AOD are provided in Sup-
plementary Text in Appendix A.

2.2. AHI AOD from Himawari-8

The AHI radiometer on Himawari-8/9 is equipped with 16 chan-
nels, with a spatial resolution of 0.5–2 km and a temporal resolu-
tion of 10 min [19]. An optimal estimation algorithm was
developed to simultaneously retrieve the AOD, single scattering
albedo at 500 nm, and Ångström exponent (AE) at 400–600 nm
[30]. Over land, the algorithm assumes that the surface reflectance
remains unchanged in a month; the second minimum reflectance
on an hourly scale is selected to establish the surface reflectance
database. Over oceans, the sea surface reflectance is calculated
based on the Cox and Munk method [39]. In this study, the Version
3 L2 AOD retrievals with either ‘‘very good” or ‘‘good” quality at
10 min resolution are used to train a baseline model (details are
provided in Section 3). Eq. (1) is used to obtain the AOD at
550 nm using AHI’s AE and AOD at 500 nm:

s550 ¼ s500 � ð550=500Þ�AE ð1Þ
where s550 and s500 are the AODs at 550 and 500 nm, respectively.

2.3. Sunphotometer AOD

In the transfer learning, ground-based sunphotometer aerosol
products are used as a reference to fine-tune the baseline model.
Both AERONET and CARSNET AOD products are used here. CARS-
NET is a ground-based aerosol monitoring system established by
the China Meteorological Administration (CMA). CARSNET sunpho-
tometers are calibrated annually according to a stringent calibra-
tion protocol, resulting in AOD measurements with the same
accuracy as those from AERONET [15]. AOD data at 89 stations over
Asia (CARSNET + AERONET) are used in this study (Fig. S2 in
Appendix A). To the best of our knowledge, this is by far the largest
number of stations with sunphotometer data ever reported in the
literature for that part of Asia. The AOD at 550 nm is simply inter-
polated from its counterparts at 440, 675, 870, and 1020 nm, using
the interpolation method described in Ref. [11].

2.4. Auxiliary data

The auxiliary data include hourly meteorological quantities
derived from the fifth generation European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis
(ERA5) produced at a spatial resolution of 0.25� � 0.25� [40]. These
quantities are: 2 m temperature (T2M, K), total column water
vapor (PWV, kg�m�2), total columnar ozone (O3, kg�m�2), boundary
layer height (BLH, m), and surface pressure (SP, Pa). Elevation (ELV,
m) from the shuttle radar topography mission’s digital elevation
model (DEM) with a 90 m spatial resolution is used as a predictor
to explain the AOD’s elevation dependence. A coarse time variable
(T)—namely, the day of the year—is used to reflect the seasonality
of AOD; it is encoded as cos (2p � T/365). Finally, since previous
studies have shown that the satellite-derived AOD uncertainty var-
ies with surface types [41], the land-cover types obtained from the
MODIS Land Cover Climate Modeling Grid (MCD12C1) Version 6
product [42] are also used as a feature.

3. Retrieval methodology

The uncertainty in satellite aerosol retrievals comes from four
major sources: sensor calibration, cloud detection, aerosol model
selection, and surface reflectance determination [43,44]. Here,
much attention is given to cloud detection, surface reflectance
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estimation, and aerosol retrieval strategy. AGRI’s calibration
accuracy is 5% for reflective solar bands [21], which will be
discussed in Subsection 4.4, along with the sensitivity analysis.

3.1. Cloud/snow/ice/water pixel mask

For the following aerosol retrievals, a simple but robust cloud
detection algorithm is first developed with reference to the work
of Su et al. [44] and the GOES-R ABI Algorithm Theoretical Basis
Document [29]. The detection algorithm consists of a set of thresh-
olds and tests, including a reflectance and brightness temperature
threshold test, a brightness temperature difference and spatial
inhomogeneity test, and a water and snow/ice pixel identification
(Table 1). The key variables are the TOA reflectances (Rk), at wave-
lengths (k) of 470, 510, 640, 650, 825, 860, 1375, 1610, and
2250 nm, as well as the brightness temperatures (BTk), at k = 8.5
and 10.7 lm.

3.2. Estimation of surface reflectance proxy

Precise discrimination between surface reflectance and aerosol
backscattering is critical for accurate AOD retrieval and has often
not been carefully considered in previous ML-based algorithms
[31,32,45]. To address this potential problem, this study adopts
the DB method to create a dynamic hourly database of surface
reflectance at 470, 650, and 2250 nm (noted q470, q650, and q2250,
respectively) for each month. All AGRI measurements that are free
of both clouds and snow/ice are retained. Considering that, every
3 h, AGRI makes two full disk scans during the first 30 min and
six regional scans every 5 min for the remaining 30 min, there
are at least 168 regional scans per month for a single hour. Because
satellite reflectance measurements are dominated by the surface
reflectance when the aerosol loading is low, and because aerosols
generally enhance the reflectance measurement, the second lowest
hourly TOA reflectance for each pixel in a month is selected here to
represent the hourly surface reflectance. It is emphasized that the
bidirectional property of surface reflectance is taken into account.
As an example, the left and right panels of Fig. S3 in Appendix A
show the baseline values of q470, q650, and q2250 in May and Octo-
ber, respectively. It should be noted that the missing values in
some grids are filled using nearest-neighbor interpolation. The spa-
tial distribution of surface reflectance is consistent across the three
bands, with the lower values found in Southern China and the
higher values in the north, west, and northwest of the domain.
Table 1
Criteria for the cloud/snow/ice/water pixel masks in this study.

Classes Criteria

Over land
Dense cloud R470 > 0.3
Cloud Brightness temperature at 10.7 lm (BT10.7) < 260 K
Edges of cloud Standard deviation calculated from 3 � 3 pixels at

R470 > 0.02 and standard deviation calculated from
3 � 3 pixels at BT10.7 > 4.5 K

Cirrus cloud BT8.5–BT10.7 > 1.0 K or R1375 > 0.018
Water Normalized difference water index (NDWI) > 0.2
Snow Normalized difference snow/ice index (NDSI) > 0.3

and not water or cloud
Over ocean
Dense cloud R860 > 0.3
Cirrus cloud R1375 > 0.018
Edges of cloud Standard deviation calculated from 3 � 3 pixels at

R2250 > 0.008
Ice NDSI > 0.3, R640 > 0.2, R870 > 0.17, and BT10.7 < 275 K

NDWI: difference between R510 and R860 normalized by the sum of R650 and R825.
NDSI: difference between R825 and R1610 normalized by the sum of R825 and R1610
[25].
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Based on the two exemplary months shown, seasonal variations
in surface reflectance are also evident. These results suggest that
the second lowest hourly TOA reflectance can effectively be consid-
ered as a proxy for surface reflectance, considering that no atmo-
spheric correction can be applied at that stage. Atmospheric
correction requires accurate AOD (which is generally not available)
as well as radiative transfer model simulations [36,46], which
would considerably increase the method’s complexity. Using the
second lowest hourly TOA reflectance simplifies the algorithm
because no external data is required.

3.3. ML AOD retrieval model development

Fig. 1 illustrates the overall framework of the retrieval algo-
rithm, which consists of three submodules: ① Data preprocessing
(orange box); ② baseline model tasks (green box); and ③ transfer-
learning tasks (blue box). The data stream from multiple sources
with different spatiotemporal resolutions is processed into a uni-
fied resolution of 4 km. Then, a baseline model (DNN with skip
connections) is developed for the initial AOD estimation by using
the AHI AOD as target. Finally, the baseline model is improved by
the transfer-learning scheme using the sunphotometer AOD as
the target. The whole procedure can thus be summarized as ‘‘pre-
processing + DNN + fine-tuning.”

3.3.1. Data preprocessing
The temporal and spatial resolutions of the original sources are

summarized in Table 2. The spatial resolution of all datasets is re-
gridded to 4 km via linear interpolation. The variables of the ERA5
reanalysis are assumed to remain constant within each hour. Thus,
the ERA5 outputs closest to the AGRI observation time are used as
the auxiliary variables. For hybrid deep learning and transfer learn-
ing, two models need to be trained sequentially. Thus, the input
data in Table 2 needs to be matched with both the AHI AOD and
sunphotometer AOD, respectively, although the two sets of
training-target locations need not coincide. For the AHI AOD, 900
sampling points are nearly uniformly selected from the
Himawari-8 domain according to the MCD12C1 land types
(i.e., about 60 points for each land type). The AHI AOD over these
900 sampling points for each observation in 2018 is extracted as
the target for the training of the baseline model. The input datasets
within ± 2.5 min of the AHI observation time over these points are
also extracted to match the AHI AOD L2 products. The matching of
the sunphotometer AOD is the same as for the AHI AOD, except for
the actual site locations. After data matching, the total number of
AHI and sunphotometer AOD samples are 1 156 090 and 127
794, respectively. A standard normalization is applied to the input
data, which standardizes the features by subtracting the mean and
scaling to unit variance. The logarithmic transformation is applied
to the target variable, since it is standard practice to transform the
typically lognormal AOD distribution into an approximately nor-
mal distribution.

3.3.2. Baseline model
A schematic diagram of the baseline model architecture is

depicted in Fig. 2. The DNN is constructed by extending the ‘‘shal-
low” network (i.e., an ANN with an input layer, one hidden layer,
and an output layer) to multiple hidden layers [47]. In this study,
a total of 16 predictors are fed into both the input layer (orange
part in Fig. 2) and the 550 nm AHI AOD (the red node in the figure)
as the output layer, using four hidden layers. It should be noted
that, although there are five gray blocks in the figure, the output
from a block is a part of the input of the next block. The batch nor-
malization, the rectified linear unit (ReLU) activation layer, and the
dropout mechanism are integrated into the processing cell (green
rectangle in Fig. 2) to regularize the network, add nonlinearity,



Fig. 1. Flowchart of the deep-learning and transfer-learning hybrid method for AGRI AOD retrieval.

Table 2
Summary of input features for the proposed retrieval algorithm.

Input source Variables Spatial
resolution

Temporal
resolution

FY4A/AGRI R470, R650, R2250, CSVA, CSZA 4 km 5 min
Reanalysis T2M, PWV, O3, SP, BLH 0.25� 1 h
Surface reflectance q470, q650, q2250 4 km 5 min
Geographic

information
ELV 90 m yearly

Land cover types MCD12C1 5 km yearly
T variable T (day of year) 4 km 5 min
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and reduce overfitting, respectively. In addition, the skip connec-
tion (represented by the red lines in the figure) is adopted to
improve the DNN and to prevent the gradient from vanishing
[48–50].

In parallel, state-of-the-art practices for DNN training are used
here. The mini-batch gradient descent search method is used with
60 epochs and a batch size of 512 to ensure a stable and robust
solution. The learning rate is initialized as 0.01 and decreases to
0.001 and 0.0001 at the 20th and 40th epochs, respectively. The
Adam optimizer is selected because it can converge quickly and
stably [51]. Although the target variable (i.e., AOD) is logarithmic,
it is still an imbalanced dataset characterized by a long tail to very
large values. Studies have indicated that the mean-squared error
(MSE) loss would underestimate the most infrequent data points
in imbalanced regression problems [52,53]. Therefore, a special
loss function (Eq. (2)) is designed to compensate for the underesti-
5

mation of large AODs. It stipulates that if the prediction value ŷn is
larger than the target value yn, the loss is equal to half of the MSE;
otherwise, the loss is exactly equal to the MSE:

lossn ¼ 0:5 yn � ŷnð Þ2; if yn � ŷn < 0

yn � ŷnð Þ2; otherwise

(
ð2Þ
3.3.3. Transfer learning
Even if the DNNmodel can accurately reproduce the AHI AOD at

550 nm, the prediction still has a certain degree of uncertainty as
compared with ground-based sunphotometer products. This is to
be expected because the AHI 550 nm AOD uncertainty is not neg-
ligible [54,55]. To further improve prediction accuracy, an addi-
tional step of transfer learning is employed.

Transfer learning is a powerful technique that has been used to
achieve state-of-the-art results in many domains [56]. For exam-
ple, Liu et al. [57] transferred a precipitation fusion model from
the source domain to the target domain. As a result, the RMSE
and MAE of the precipitation predictions in the Qinghai–Xizang
Plateau were significantly reduced (by 27.6% and 22.5%, respec-
tively) after fine-tuning.

In general, the first layer of the pretrained network is not partic-
ularly related to the target dataset, unlike the last layer of the net-
work, which is closely related to the target task. Correspondingly,
the features of the first layer are called ‘‘general features,” whereas
those of the last layer are called ‘‘specific features.” Therefore, the



Fig. 2. Architecture of the hybrid model for advanced aerosol retrieval. Circles represent the input and output parameters of one layer, whereas red lines represent the skip
connections. The coefficients wi (i = 1, 2, . . ., 5) are the weight parameters of the neural network. The numbers in the blue boxes are the input and output dimensions of the
network. The independent variables Xi (i = 0, 1, . . ., 4) refers to the inputs for each layer. BN: batch normalization.
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fine-tuning strategy usually adjusts the parameters of the last full-
connected layers of the pretrained network. In this study, the
parameters in the front layers of the pretrained model are fixed
as described in Section 3.3.2. The parameters of the full-
connected layers (w4 and w5 in Fig. 2) are then adjusted by using
the new target—that is, the sunphotometer AOD.
4. Results, verification, and discussion

4.1. Model performance in testing datasets and comparison among
different methods

Here, two types of validation are used for both the baseline
model development and the transfer-learning fine-tuning. First,
according to the spatial distribution of the ground sites, 10% of
the sites (90 out of 900 sample points and 9 out of 89 ground sites
in Fig. S2) are evenly selected as the testing datasets (out-of-
station validation). A 10 fold cross validation is then used in the
training process to learn the optimal hyper-parameters of the
DNN. The parameters used to evaluate the model performance
are R2, the RMSE, the mean bias error (MBE), and the EE [58,59].

Fig. 3(a) shows the performance of the baseline model trained
only with the AHI AOD at 90 AHI testing points. The results have
a slight dispersion, with an R2 of 0.63 and 59.4% of the predictions
within the EE. The slope value of the linear regression is 0.82, indi-
cating a slight underestimation, particularly when the aerosol
loading is high. When the trained baseline model is directly
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applied to the nine testing sunphotometer sites (Fig. 3(b)), a slight
degradation in model performance is observed (MBE increases
from –0.01 to 0.06, and only 51.3% of the predictions remain within
the EE). This suggests that the baseline model still has much room
for improvement. Compared with Figs. 3(b) and (c) shows substan-
tial improvement in the results of the model after fine-
tuning, which suggests that the transfer-learning method has
significantly improved the retrieval performance of the baseline
model. More specifically, the fine-tuning approach increases R2 to
0.70 and the slope to 0.91, while decreasing RMSE and MBE to
0.15 and 0.03, respectively. Moreover, 70.7% of the results are
now within the EE.

Although the fine-tuning process does decrease both bias and
random errors, Fig. 3(c) still displays significant scatter. Whereas
this might be considered unavoidable to a large extent because
of natural variability in the aerosol field, inadequacies in the retrie-
val procedure, and so forth, more scrutiny is warranted to help
diagnose other possible sources of scatter. The comparisons in
Fig. 3 are made between retrievals that represent an average
AOD value over a satellite pixel and a point-source observation
at a sunphotometric site located somewhere within that pixel.
Here, the implicit assumption is thus that the ground-truth site
is truly representative of the pixel in terms of the aerosol field. This
is, however, not always the case in practice, such as wherever the
ground-truth site is at a widely different elevation than the pixel’s
mean elevation. This situation particularly occurs when a ground-
truth site is located at the bottom of a valley surrounded by high
mountains or, conversely, located on top of an isolated high



Fig. 3. Performance of the proposed hybrid AOD retrieval algorithm when considering (a) the baseline model (i.e., DNN with skip connections) at 90 testing AHI locations,
(b) the baseline model at nine testing sunphotometer sites, and (c) the fine-tuned model at nine testing sunphotometer sites. Solid black lines indicate the 1:1 diagonal,
dashed lines represent the EE envelope.
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mountain surrounded by low-elevation terrain. For example, the
latter case occurs with the Gaolanshan station, a top-of-
mountain site at an elevation of 1668 m—that is, above most of
the tropospheric aerosol layer. As a result, the observed reference
AOD is much lower than the retrieved pixel’s mean. Unfortunately,
there is currently no specific criterion to evaluate the inherent
heterogeneity of a pixel or to decide whether a ground-truth sta-
tion should be excluded when conducting for this kind of valida-
tion. Arbitrarily removing such stations from the testing pool
could lead to a loss of statistical significance and is therefore not
an appropriate solution. Another approach would be to introduce
a specific elevation correction to modify the retrieved AOD so that
it becomes more directly comparable to the local ground truth.
This is the process that was followed in Ref. [11], for example,
but it is empirical and may not be ideal in all cases. Hence, it
was not attempted here.

A comparison of the AGRI AOD retrieval results obtained here
with those from previous studies is presented in Table 3. One dif-
ficulty is that the comparisons are made against different verifica-
tion datasets or resolutions; hence, the validation results are not
directly comparable on a fair basis. The MC method by Xie et al.
[36] apparently performs best in terms of RMSE, percentage within
the EE, and time resolution among the three studies reported here.
Nonetheless, the MC method was originally applied over South
Asia only, where aerosol properties are not more complex than
those over China. Furthermore, the lower resolution 10 km AOD
retrieved by Xie et al. [36] benefits from certain geographical
smoothing effects, which tend to make the error smaller. The
NNAeroG method by Ding et al. [37] achieves the best R2, but it
seems to underestimate at high AODs (slope = 0.71, intercept =
0.09). This underestimation can be expected, since only sunpho-
tometer AODs are used as targets in NNAeroG, and any MSE loss
would underestimate the rare occurrences (i.e., very high AODs).
In comparison, the lowest RMSE (0.15), highest time/spatial resolu-
tion, and largest percentage of data within the EE (70.7%) are
Table 3
Overview of the performance of AOD retrievals from AGRI in published validation studies

Method and author Linear equation RMSE R2 Percentage w

MC 0.16 N/A 63.7%
DT-LUT 0.31 0.71 60% (EE20)
NNAeroG Y = 0.71X + 0.09 0.24 0.73 58.7%
DNN with transfer learning Y = 0.91X + 0.02 0.15 0.70 70.7%

Note: EE20 refers to the EE envelope of ± (0.05 + 20%) used by Jiang et al. [58]. X and Y rep
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achieved by the present method. Furthermore, while the present
R2 of 0.70 is slightly lower than the first ranked value of 0.73
obtained by NNAeroG, the method proposed here largely solves
the problem of underestimation with a self-defined loss function
(slope = 0.91, intercept = 0.02). Overall, the results in Table 3 sug-
gest that the current algorithm should be able to outperform the
other three methods when verified against the same dataset at
an identical spatiotemporal resolution.

4.2. Overview of AOD retrievals

Fig. S4 in Appendix A shows the mean AGRI AOD over the four
seasons: March–April–May (MAM), June–July–August (JJA),
September–October–November (SON), and December–January–Fe
bruary (DJF). The seasonal mean AGRI AOD values are 0.26, 0.22,
0.16, and 0.21 for the four seasons, respectively. A high AOD is
the norm during MAM and JJA over the Tarim Basin because of
the prevalence of desert dust then emitted by the Taklamakan
Desert [44]. It should be noted that the AHI AOD cannot capture
the high AOD over the Tarim Basin because the AHI’s observation
domain does not cover that region (Fig. S2(a)). High AOD values
also occur over the North China Plain, where the occurrence of
haze is typically frequent [61]. The lowest AOD values are observed
over the Xizang Plateau because the high altitude of the Himalaya
barrier prevents aerosol penetration from other regions, such as
South Asia. The missing values in the north part of the figure for
DJF are caused by the ice/snow cover, which prevents meaningful
retrievals.

Numerous studies have shown that the MAIAC AOD product has
high accuracy compared with ground-based sunphotometer AODs
[9,62–64]. Therefore, the accuracy statistics between the seasonal
mean MAIAC AOD and the AGRI AOD in the figure further demon-
strate the reliability of the latter, with R2 ranging from 0.50 to 0.68,
a maximum MBE of less than 0.03, and at least 60.1% of the data
within the EE.
. The best value of each metric appears in boldface.

ithin EE Time/spatial resolution Study area Reference

5 min/10 km South Asia (land) [36]
1 h/4 km China (land) [60]
1 h/4 km Full disk (land) [37]
5 min/4 km China (land and ocean) This study

resent the satellite-derived AODs and the corresponding ground truths, respectively.



Fig 4. Variations of AERONET AOD, AGRI AOD, and MAIAC AOD over Beijing (116.38�E, 39.98�N) on November 1, 2018.

Fig. 5. Variations of AERONET AOD, AGRI AOD, and MAIAC AOD over Beijing (116.38�E, 39.98�N) on (a) January 13, 2018, (b) April 28, 2018, and (c) July 1, 2018.
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Table 5
Sensitivity study for the input features of AGRI AOD retrievals.

Input
feature

Benchmark
input value

Assumed relative
uncertainty in input (%)

Range of relative error
in AOD retrieval (%)

R650 0.09 ± 5 (–18.88, 10.43)
R470 0.11 ± 5 (–17.23, 14.01)
PWV 9.39 ± 5 (–4.21, 4.07)
q650 0.09 ± 9 (11.74, –10.80)
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4.3. Extreme pollution event

An extreme aerosol case is selected here to demonstrate the
advantages of the AGRI AOD under such conditions, which can be
frequent in various parts of Asia. As shown in Fig. 4, the air quality
in Beijing (one of the nine testing stations) on the afternoon of
November 1, 2018 significantly deteriorated compared with the
morning: the AOD increased from 0.09 at 00:50 to 0.52 at 07:45
(universal time, 8 h behind local time). However, the MAIAC AOD
provides limited information, as only two AOD values are reported
for that day (i.e., 0.19 at 02:30 and 0.24 at 05:30). Encouragingly,
the AGRI AOD provides 33 observations for that day and reflects
the continuous increase in AOD, reaching a maximum value of
0.44 in the afternoon. Remarkably, the AGRI AOD remains within
± 0.1 of the ground–truth observations. The overestimation in the
early hours is likely associated with the uncertainty in surface
reflectance. As discussed in Section 3.2, the surface reflectance
used in the present method is not strictly aerosol-free because
not obtained by the usual atmospheric correction process. Hence,
any underestimation in surface reflectance leads to an overestima-
tion of the AGRI AOD.

In Fig. S5 in Appendix A, the AGRI AOD is overlaid with an RGB
true-color image (also from AGRI) on November 1, 2018. The blue
rectangle covering the Beijing–Tianjin–Hebei area is the region of
interest (ROI). At 01:30 coordinated universal time (UTC), only
about 50% of the ROI has an AOD value exceeding 0.4, with high
values being concentrated in the southwest. Over time, the area
with an AOD exceeding 0.4 within the ROI gradually increases,
reaching nearly 75% of the ROI at 07:30 UTC. This gradual develop-
ment process is not reflected by the MAIAC AOD because of its
coarser temporal resolution. The three additional cases displayed
in Fig. 5 also demonstrate the excellent results of the AGRI-based
proposed method when applied to the monitoring of urban aero-
sols over areas where air pollution is variable and often significant,
as in Beijing. The figure underlines that the present method can
provide AOD retrievals that are comparable to the ground truth—
and are often better than those of MAIAC—under low-, medium-,
or high-AOD situations.
4.4. Feature contribution and uncertainty analysis

The Shapley additive explanations method proposed by Lund-
berg and Lee [65] is used here for model interpretability. This
method assigns a contribution to each prediction feature by con-
sidering the marginal contribution of the feature when it is pre-
sent. Table 4 displays the contributions of the top 10 model
features to the AGRI AOD retrievals. It is evident from the results
that ELV (–0.23), R650 (–0.14), R470 (–0.13), and PWV (–0.12) are
the four most important features (in terms of their absolute mag-
nitude). Remarkably, higher values of these features correspond to
smaller values of the AGRI AOD. A plausible explanation for this
Table 4
Feature contributions to the AGRI AOD retrieval (only the top 10 features are
presented).

Feature name Contribution

ELV –0.23
R650 –0.14
R470 –0.13
PWV –0.12
q650 0.08
CSZA 0.08
q2250 –0.05
R2250 0.04
MCD12C1 –0.04
q470 0.02
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trend is that the high values of ELV are found over Northwest
China, where the AOD is relatively low. Regarding R650 and R470,
higher reflectance values in these two channels generally indicate
less extinction of solar radiance by aerosols, thus lower AOD val-
ues. Moreover, relatively high PWV is commonly observed over
the ocean, with extremely humid air wobbling north and south
of the equator [66]. In contrast, high AOD values are closely asso-
ciated with human activities over the land. Therefore, the negative
contribution of PWV in the model likely reflects the difference in
the respective spatial distributions of AOD and PWV. In contrast
with the above four features, q650 exhibits a positive contribution
(0.08), meaning that higher q650 values are associated with larger
AODs. This explains why high values of both q650 and AOD always
jointly appear over the Tarim Basin, as inferred from the surface
reflectance in Fig. S3 and the seasonal mean AODs in Fig. S4.

According to the order of feature contributions in Table 4, sen-
sitivity experiments are conducted for the top features. ELV is
excluded here because of its high accuracy [68]. Therefore, only
R650, R470, PWV, and q650 are selected for this sensitivity study.
These specific variables are of obvious interest because the errors
in sensors, reanalysis, and the surface reflectance proxy are
expected to propagate down to the AOD retrieval. The benchmark
of stimulation is extracted from the input features at the AERONET
Beijing site on November 1, 2018. Specifically, R650 and R470 are the
TOA reflectances from AGRI; PWV is derived from ERA5; q650 is the
surface reflectance proxy at 650 nm. The uncertainties of R650 and
R470 are all assumed to be 5%, as reported by Yang et al. [21]. The
uncertainty of PWV is obtained from Wang et al. [67]. The uncer-
tainty in q650 is calculated from the difference between the bench-
mark input value (0.09) and the AERONET average observation
(0.10) at 02:00 on November 1, 2018. Table 5 summaries the
sensitivity of the retrieved AOD to these features. As shown in
the table, the largest error sources are R650 and R470, whose
relative errors in AOD retrievals vary from –18.88% to 10.43% and
from –17.23% to 14.01%, respectively. The somewhat related sur-
face reflectance at 650 nm (q650) is the third largest source of error,
as a consequence of the large relative uncertainty in q650 (± 9%).
5. Conclusion

In this study, the AOD over land and ocean was estimated using
a deep-learning and transfer-learning hybrid aerosol retrieval algo-
rithm based on the AGRI sensor onboard the FY-4A geostationary
satellite. This specific retrieval approach was chosen because a
DNN requires large datasets to train network models, whereas
the number of ground-based sunphotometer stations is limited.
The proposed algorithm first uses 10 min AHI AODs as targets to
train a baseline model (DNN with skip connections). Another core
part of the hybrid algorithm is based on transfer learning, which,
on top of the baseline model, uses sunphotometer AOD observa-
tions from 89 ground stations to fine-tune the parameters of the
fully connected layer. The proposed algorithm ensures that suffi-
cient samples exist to efficiently train the baseline model, and that
the subsequent fine-tuning results in sufficient portability over the
whole domain.
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The algorithm was applied to a one year AGRI dataset for eval-
uation. Compared with the baseline model, employing transfer
learning for fine-tuning was shown to substantially improve the
model performance. The R2 increased from 0.63 to 0.70, while
the RMSE and MBE decreased from 0.19 and 0.06 to 0.15 and
0.03, respectively. Moreover, 70.7% of the results were found
within the EE—an approximately 20% improvement over the base-
line value of 51.3%. In applications where the AOD is needed to
study extreme aerosol events, the present 5 min AGRI retrievals
offer the important advantage of providing multiple AOD estimates
during the day, at least in the absence of clouds over 4 km pixels.
The feature importance study showed that the top five features
contributing to AOD retrieval are ELV, R650, R470, PWV, and q650.
Considering the uncertainties and impacts of input features, R650,
R470, and q650 were found to be the three largest error sources in
the retrievals, followed by PWV. This study demonstrates the great
potential of combining a physical approach with deep learning in
geoscientific analysis. The proposed algorithm can also be applied
to other multi-spectral sensors, such as AGRI on FY-4B.

Nevertheless, the present algorithm has still room for improve-
ment. For example, the cloud detection method can affect the esti-
mation of surface reflectance as well as the coverage of the
retrieved AGRI AOD. More generally, the accuracy of aerosol retrie-
val techniques is closely tied to the exclusion of unsuitable pixels.
Failure to accurately identify polluted layers as clouds or misclas-
sifying clouds as polluted layers can lead to erroneous AOD esti-
mates. These errors not only affect the overall quality of AOD
products but also hinder the interpretation and utilization of
remote-sensing data for various applications. Therefore, improve-
ments to the cloud mask are being envisioned to improve the accu-
racy of the AGRI AOD in the future. Any other improvement in the
determination of the surface reflectance at 650 nm would also be
useful. If the proposed method is intended to be implemented
operationally, the present reliance on the ERA5 reanalysis to obtain
the input features poses a challenge due to its significant time
delay. A possible alternative would be to obtain such data from a
nowcast or forecast data stream provided by institutions such as
CMA, ECMWF, or NOAA.

Moreover, the present method employed the AHI AOD as an
intermediate target for the model. However, directly extracting
its direct impact on the AGRI AOD is not a viable approach. To eval-
uate this impact, future investigations should consider utilizing
two different versions of AHI AOD datasets. Furthermore, the pre-
sent analysis focused on East Asia, where many sunphotometer
stations exist. Further studies are needed to expand the validation
to the whole FY-4A domain—that is, including other regions of
Asia, Australia, and the oceans.
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