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Decision-making and motion planning are extremely important in autonomous driving to ensure safe
driving in a real-world environment. This study proposes an online evolutionary decision-making and
motion planning framework for autonomous driving based on a hybrid data- and model-driven method.
First, a data-driven decision-making module based on deep reinforcement learning (DRL) is developed to
pursue a rational driving performance as much as possible. Then, model predictive control (MPC) is
employed to execute both longitudinal and lateral motion planning tasks. Multiple constraints are
defined according to the vehicle’s physical limit to meet the driving task requirements. Finally, two prin-
ciples of safety and rationality for the self-evolution of autonomous driving are proposed. A motion
envelope is established and embedded into a rational exploration and exploitation scheme, which filters
out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the
DRL agent. Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environ-
ment are conducted, and the results show that the proposed online-evolution framework is able to gen-
erate safer, more rational, and more efficient driving action in a real-world environment.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Autonomous vehicles are a product of the deep integration of
the automotive industry with new-generation information tech-
nologies such as artificial intelligence (AI) and high-performance
computing, and they represent one of the most important direc-
tions of global automotive development. Decision-making and
motion planning are the core of autonomous driving, as they
directly determine how an autonomous vehicle moves and reacts
to its dynamic environment. The decision-making module receives
environment and vehicle information, and outputs the desired
driving behavior to the motion planning module. The latter further
outputs the desired trajectory to the trajectory tracker or directly
outputs the desired commands to the vehicle actuators. Thus, these
two modules form the ‘‘brain” of an autonomous vehicle, and their
performance directly affects the ability of the vehicle to deal with a
dynamic and open traffic environment.

The decision-making methods used in autonomous driving
include rule-, optimization-, utility-function-, and AI-based meth-
ods. Rule-based methods are simple, but their applicable scenarios
are limited. Nilsson et al. [1] investigate rules to determine the
appropriate lane-changing time by choosing a safe trajectory
through longitudinal planning. Another typical method based on
a hierarchical state machine is also widely used [2]. Noh [3] pro-
poses a robust method using risk metrics and Bayesian networks,
with a distributed reasoning structure to ensure safety.
Optimization-based methods can achieve optimality, but it is diffi-
cult to use them to handle model-free problems. Nilsson and
Sjöberg [4] employ a hybrid logic system to develop an integrated
decision-making method based on model predictive control (MPC),
and predicting the movement of surrounding vehicles is further
considered in Refs. [5,6]. Karlsson et al. [7] first use MPC to gener-
ate candidate trajectories, and then determines the optimal deci-
sion through optimization. Nilsson et al. [8] consider the average
travel time, remaining time, and traffic rules to form a utility
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function to generate the target lane. Cui et al. [9] consider the gap
and speed satisfaction from the preceding vehicle to calculate a
utility value. Comfort, efficiency, safety, and human-like lane selec-
tion probability are also considered to design a utility function in
Ref. [10]. Utility-function methods have simple structures, but
the selection of evaluation indicators is complicated.

For motion planning, two main frameworks are popularly used
in the literature. In the first framework, the trajectory is planned
first, and then trajectory tracking is executed. Common trajectory
planning methods include the polynomial method [11], the spline
method [12], and the clothoid method [13]. Widely used trajectory
tracking methods include proportional–integral–derivative (PID)
control [14,15], sliding mode control (SMC) [16,17], and MPC
[18,19]. Most of these methods ignore the coupling between trajec-
tory planning and tracking control, which can easily cause con-
flicts. For example, in a fast-changing environment, the planned
trajectory may not be trackable. In the other framework, the trajec-
tory planning stage is skipped by means of optimization methods,
and steering and longitudinal-control commands are directly out-
putted to vehicle actuators. This framework can obtain optimality
under certain conditions and considers the coupling between tra-
jectory planning and tracking control. As a result, it has been
widely studied, especially in regard to MPC-related methods [20–
24]. MPC can be used to deal with the optimal control problem
with multiple constraints and can naturally imitate a driver’s pre-
dictive behavior.

In addition, with the recent development of AI methods,
learning-based autonomous driving techniques have been widely
studied [25] and are usually based on imitation learning (IL) [26]
and reinforcement learning (RL) [27] methods. Liu et al. [28] use
a Gaussian kernel support vector machine (SVM) to make lane-
changing decisions, while Wang et al. [29] utilize long short-term
memory (LSTM) to make human-like decisions. End-to-end learn-
ing is another popular technique that maps sensing information
to the vehicle control commands. Xiao et al. [30] present a multi-
modal conditional IL (CIL) method for end-to-end autonomous
driving. Menner et al. [31] propose that the parameterized motion
planning objective be learned via inverse learning. Regarding RL
methods, Peng et al. [32] employ a dueling double deep Q-
network (DQN) approach to design the steering controller. Lin
et al. [33] further utilize a deep deterministic policy gradient
(DDPG) algorithm for continuous adaptive cruise control. In addi-
tion, He et al. [34] present a constrained robust actor-critic (AC)
method for lane changing under traffic uncertainties. Although
AI-based methods are good at learning, they are highly dependent
on data, and cannot easily ensure safety for safety-critical systems.
Similar studies can also be found in Refs. [35–39] and others.

Autonomous vehicles are a typical safety-critical system, so the
aforementioned methods still present challenges, especially in an
open driving environment. First, from the perspective of system
development, rule- and model-based methods are mostly used to
develop decision-making and planning algorithms, or AI-based
methods are employed to train feasible policies offline in the
developing stage. These algorithms or policies are then deployed
in autonomous vehicles, making it difficult to endow vehicles with
online learning and continuous evolution in the operating stage
with the driver and passengers in the loop. However, such a capa-
bility is extremely necessary in order for autonomous vehicles to
be able to deal with an unknown, dynamic and open traffic envi-
ronment in a continuable, growable, and reliable manner.

Second, the ‘‘black-box” nature of deep learning and the random
trial-and-error mechanism of deep RL (DRL) seriously affect safety
and trustworthiness when exploring and exploiting policy online
in the operating stage. Therefore, it is another important challenge
to realize the safe and rational evolution of autonomous driving.
Finally, most existing studies ignore the mutual coupling between
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decision-making and motion planning, and design the two layers
separately to achieve individual objectives in a sequential manner.
These studies usually develop the decision-making layer without
considering the planning capability boundary constrained by vehi-
cle kinematics and dynamics. This will result in decisions that are
too aggressive to be well executed by the planning layer or too
conservative to waste the planning layer’s capability; thus, such
methods cannot achieve optimal performance of the whole
decision-making and planning system. The present study
addresses these problems, and its main contributions are as
follows:

(1) A novel online-evolution framework of decision-making and
planning for autonomous driving in the operating stage is pro-
posed by developing a hybrid data- and model-driven method
based on DRL and MPC. This framework takes advantage of the
high self-adaptation and self-learning capabilities of data-driven
methods, as well as the interpretability and ability to handle hard
constraints of model-driven methods.

(2) Two principles for safety and rationality in the online evolu-
tion of autonomous driving are proposed. Based on the above
framework, a safe-driving envelope is established, and a rational
exploration and exploitation scheme is designed that filters out
random and unsafe experiences by masking unsafe actions in order
to obtain high-quality training data and realize the safe and
rational self-evolution of autonomous driving.

(3) Mutual coupling between the decision-making layer and the
planning layer is considered in order to pursue the optimal perfor-
mance of the whole system. Based on a safe online-learning mech-
anism, the continuous evolution of the system within the
capability boundary of the planning layer is realized, along with
the maximum utilization of the capabilities of the planning layer.

The remainder of this paper is organized as follows: Section 2
introduces the whole proposed framework. The data-driven evolu-
tionary decision-making module is then presented in Section 3
with the DQN problem formulation and parameter design. A
model-driven motion planning method using MPC is elaborated
in Section 4. Section 5 develops the safe and rational exploration
and exploitation mechanism based on a predictive safe driving
envelope model and a rational exploration and exploitation
scheme. Finally, Section 6 demonstrates a case study, and Section 7
presents conclusions and identifies future work.
2. Proposed framework

Autonomous vehicles require not only high adaptability and
learning ability in an open traffic environment but also strict safety
and strong rationality. Data-driven methods are difficult to inter-
pret and cannot ensure strict safety, although they are good at
learning. In comparison, model-driven methods lack self-
adaptation and self-learning, but they are interpretable and can
handle various constraints. Therefore, this study proposes a frame-
work by designing a hybrid data- and model-drivenmethod to deal
with decision-making and motion planning as a whole. Decision-
making is more relevant to vehicle adaptation and learning capa-
bilities, while motion planning is directly related to vehicle safety.
In addition, to realize safe and rational self-evolution in a real-
world driving environment, the framework introduces a safe-
driving envelope to address difficult safety constraints, as well as
a rational exploration and exploitation scheme. The proposed
framework is capable of considering the coupling between
decision-making and motion planning—that is, the evolution of
decision-making is based on the capability boundary of motion
planning.

RL has the advantages of being model-free, unsupervised, and a
form of autonomous learning, and it is very suitable for learning to
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make decisions that are difficult to model in complex uncertain
scenarios. MPC has an inherent advantage in dealing with predic-
tive optimization problems with hard constraints and well reflects
the predictive driving behavior of human drivers. Therefore, in this
study, we chose the DQN approach in DRL for learning discrete
decision policies, while using MPC for safe motion planning. It
should be noted that the planning layer in this study receives the
decision commands and directly outputs the desired steering and
acceleration commands to the vehicle actuators. The overall struc-
ture proposed in this study is shown in Fig. 1.
Fig. 1. The overall framework of online evolutionary decision-making andmotion plannin
figure are defined in Section 4. 1–6: the six traffic vehicles; E: the ego vehicle; LatMP: the
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This framework consists of an environment module, a data-
driven evolutionary decision module, a model-driven motion plan-
ning module, and a safe and rational policy exploration and
exploitation module. First, the environment module outputs the
motion states of the ego vehicle and the surrounding vehicles to
the three modules. Then, in the decision module, the DQN agent
learns iteratively by continuously interacting with the environ-
ment through trial-and-error. At each time step, the DQN agent
outputs the decision command to the motion planning module
and receives a filtered signal on the current bad decision from
g for autonomous driving in the operating stage. The formulas and parameters in the
lateral motion planning module; LonMP: the longitudinal motion planning module.



Fig. 2. The state and action space configuration.
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the safe and rational policy exploration and exploitation module.
Next, the MPC-based motion planning module decouples the
desired driving behavior into longitudinal and lateral motions after
receiving the decision commands. Accordingly, longitudinal and
lateral planning are respectively performed. Finally, in the safe
and rational policy exploration and exploitation module, a safe
driving envelope is constructed to constrain the MPC planning
problem. The rational exploration and exploitation scheme based
on trial-and-error is further designed to perform safety checking
and rational motion correction control of the desired decision com-
mands in real time. In this way, the current unreasonable desired
decisions are masked and fed back to the DQN decision agent.
Meanwhile, the corresponding obtained acceleration and steering
commands are outputted to the environment to control the ego
vehicle.

3. Data-driven evolutionary decision-making

This section introduces the DQN-based evolutionary decision
module, including decision problem formulation and parameter
design.

3.1. DQN-based decision-making problem formulation

The decision-making of autonomous driving can be considered
to be a sequential optimal decision-making process, which can be
described by a Markov decision process (MDP). Based on the MDP,
the RL agent can guide the autonomous vehicle to interact and
learn with the environment by defining the reward function, con-
structing the optimization objective, and using the trial-and-error
learning mechanism, finally obtaining the optimal decision-
making policy. An MDP is defined as a tuple M ¼ hS;A; T;R; ci,
where S is the state space; A is the action space;

T ¼ pat
ststþ1: st ; stþ1 2 S; at 2 A

n o
is the state transition probability

from state st to st+1 with action at (where pat
ststþ1 is the state transi-

tion probability and at is the chosen action); R ¼ ratst stþ1 is the instant
reward of the above state transition and r is the reward value; and
c is the discount factor. The corresponding decision-making policy
is defined as pðat jstÞ ¼ pat

st , denoting the probability of choosing at
at st. The state value function VpðstÞ is the expected accumulated
reward obtained by executing p starting from st, which is defined
as follows:

VpðstÞ ¼ Ep
X1

k¼0c
kratþkstþkstþkþ1 jst

h i
ð1Þ

where Ep is the calculation of expectation, k is the state transition
index, and t is the current time step.

The state-action value function Qpðst ; atÞ is defined as follows:

Qpðst ; atÞ ¼ Ep
X1

k¼0c
kratþkstþkstþkþ1 jst ; at

h i
ð2Þ

The optimal policy of the agent is a policy that enables every
state with its maximum state value, which is defined as:

p� ¼ argmax
p

Vp stð Þ;8st 2 S ð3Þ

where p* is the optimal policy.
The optimal policy ensures the unique optimal state value V�ðstÞ

and state-action value Q �ðst ; atÞ of every state and state-action pair,
respectively, which can be calculated by solving the Bellman opti-
mality equation (BOE):

V�ðstÞ ¼max
at

P
stþ1p

at
ststþ1 ½ratst stþ1 þ cV

�ðstþ1Þ�
Q �ðst; atÞ ¼

P
stþ1p

at
ststþ1 ½ratst stþ1 þ cmax

atþ1
Q �ðstþ1; atþ1Þ�

8<
: ð4Þ
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The optimal action p�ðat jstÞ can be calculated as follows:

p�ðatjstÞ ¼ argmax
at2A

Q �ðst ; atÞ;8st 2 S ð5Þ

However, it is difficult to solve the BOE directly when the
dimension of S or A is too large. Q-learning is a classical off-
policy RL algorithm based on temporal difference (TD), which
solves the BOE by the approximate state-action value iteration:

Qðst; atÞ  Qðst; atÞ þ a½ratst stþ1 þ cmax
atþ12A

Qðstþ1; atþ1Þ � Qðst ; atÞ� ð6Þ

where a is the RL learning rate. Based on Q-learning, DQN utilizes a
neural network to approximate the state-action value function so as
to train the RL agent with a continuous state space such as the
decision-making agent in autonomous driving. Similarly, the
parameter of the Q-network ht can be updated as follows:

htþ1 ¼ ht þ a½ratst stþ1 þ cmax
atþ12A

Qðstþ1; atþ1; htargetÞ

� Qðst; at; htÞ� � rQðst ; at ; htÞ
ð7Þ

where htarget is the parameter of the target Q-network. Furthermore,
double-DQN is proposed to improve the overfitting of traditional
DQN [36], which updates ht as follows:

htþ1 ¼ ht þ a½ratst stþ1 þ cQðstþ1; argmax
atþ12A

Qðstþ1; atþ1; htÞ; htargetÞ

� Qðst ; at ; htÞ� � rQðst ; at ; htÞ ð8Þ
3.2. DQN parameter design

3.2.1. State and action space configuration
The action space in autonomous driving must accurately and

completely describe the driving behavior during a specific driving
task. On the one hand, the selection of the state space must con-
sider the most important environment elements that induce driv-
ing behavior; on the other hand, it is necessary to ignore less
important environment elements as much as possible to reduce
their interference on driving behavior, which can simultaneously
reduce the dimension of the state space to save computation
resources. In this study, we design an algorithm for the driving task
of an ego vehicle traveling in three-lane traffic flow. The driving
behaviors in this task include lane keeping, left lane changing,
and right lane changing, which can be regarded as behaviors that
pursue different target lanes. Therefore, the identifiers (IDs) of all
the possible target lanes are directly selected to construct the
action space. The perception attention of a human driver directly
affects the generation of that person’s driving behavior and is the
most important factor inducing different driving behaviors. In gen-
eral, the most basic perception attention range of a human driver
can be described by the position and motion information of the
ego vehicle and its nearest surrounding vehicles; thus, this infor-
mation is selected to construct the state space. It should be noted
that this state space construction method can be extended to other
driving tasks, as well as to a wider range of human-like perception.
The state space S and the action space A are depicted in Fig. 2, and
are defined as follows:



Fig. 3. The lateral dynamics model of the ego vehicle. Fyf , Fyr: the lateral forces of
the front and the rear tires, respectively; af, ar: the side slip angles of the front and
the rear tires, respectively; lf , lr: the distances from the vehicle’s center of gravity to
the front and the rear axles, respectively; re: the yaw rate; u, v: the longitudinal and
the lateral velocities in vehicle coordinates, respectively; w: the yaw angle in global
coordinates; d: the front wheel steering angle; b: the side slip angle of the vehicle’s
center of gravity; x and y separately denote the longitudinal and lateral axis in the
vehicle coordinate system, respectively.
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S ¼ vx;vy;Y ;Dd1;Dvx1;Dd2;Dvx2;Dd3;Dvx3;Dd4;Dvx4;Dd5;Dvx5;Dd6;Dvx6
� �T

A ¼ TL1;TL2;TL3½ �T

(

ð9Þ

where S consists of the longitudinal and lateral velocities (vx; vy) of
the ego vehicle in vehicle coordinates, the lateral position (Y) of the
ego vehicle in global coordinates, and the relative distances
(Dd1;Dd2;Dd3;Dd4;Dd5;Dd6) and velocities (Dvx1;Dvx2;Dvx3;Dvx4;

Dvx5;Dvx6) between the ego vehicle and the six surrounding traffic
vehicles; and the variables TL1–TL3 in A separately denote the three
target lane IDs.

3.2.2. Reward function design
The reward function is the driving force that guides the learning

direction of the RL agent. In autonomous driving, the primary cri-
terion for the design of the reward function is to reflect the global
goal of the driving task, which in our case is to make the ego vehi-
cle pursue the highest possible traffic efficiency under the premise
of the road speed limit. Therefore, this study considers the speed
reward. It should be noted that this paper does not need to con-
sider reward dimensions such as safety (i.e., collision avoidance)
and comfort using traditional reward design methods; rather, it
transfers these global goals to the model-driven planning layer
and the safe and rational exploration and exploitation mechanism,
to be introduced later. This mechanism is based on trial-and-error
of the desired decision, where the success of trial-and-error means
that the planning layer can immediately implement the safe plan-
ning to execute the desired decision command, and failed trials
mean that the desired decision cannot be executed immediately
in a safe way and will be masked and corrected back to safe con-
trols. In this way, the mechanism can directly and stably ensure
the most basic driving needs such as safety and comfort.

Therefore, the reward function of the autonomous driving RL
agent is defined as follows:

ratst stþ1 ¼ wv
vx � vmax

vmax

� �2

ð10Þ

where vmax is the road speed limit and wv is the weighting
coefficient.

4. Model-driven motion planning

This section introduces the MPC-based motion planning mod-
ule, including the MPC prediction model design and the motion
planning problem formulation.

4.1. MPC prediction model design

4.1.1. Vehicle kinematics and dynamics modeling
In different driving tasks and even different driving behaviors,

human drivers have different preferences for longitudinal and lat-
eral motions. When solving the longitudinal and the lateral motion
control problems of the ego vehicle through the same optimization
problem with the same optimization objective, it is often difficult
to reasonably allocate the priority of longitudinal and lateral opti-
mal control, which results in unstable vehicle motion control.
Therefore, this study decouples the longitudinal and lateral motion
of the vehicle and uses MPC to control the vehicle.

The longitudinal differential kinematics model of the ego vehi-
cle is defined as follows:

_X ¼ vX

_vX ¼ aX

(
ð11Þ

where X, vX , and aX denote the longitudinal position, the longitudi-
nal velocity, and the longitudinal acceleration of the ego vehicle in
global coordinates, respectively.
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To consider the lateral dynamics of the ego vehicle more accu-
rately and to improve the lateral motion stability, a linear tire
model is employed. This model assumes a linear relationship
between the tire force and the slip angle over a certain range of tire
slip angle and assumes a small front wheel steering angle. Based on
this assumption, a linear MPC prediction model can be constructed,
which can then be solved by means of standard quadratic pro-
gramming, avoiding the high computation burden brought by non-
linear MPC calculations. This assumption can also be used for
normal stable driving conditions. The lateral dynamics model of
the ego vehicle is shown in Fig. 3.

_v ¼ ðFyfþFyrÞm � _Xþv sinw
cosw re

_w ¼ re
_re ¼ ðFyf lf�Fyr lrÞIz

_Y ¼ _Xþv sinw
cosw sinwþ v cosw

8>>>>>><
>>>>>>:

ð12Þ

where v is the lateral velocity in vehicle coordinates; re is the yaw
rate; w represents the yaw angle in global coordinates; m and Iz
denote the mass and the moment of inertia, respectively; lf and lr
are the distances from the vehicle’s center of gravity to the front
and the rear axles, respectively; Fyf and Fyr are the lateral forces

of the front and the rear tires, respectively; and _v , _w, _re; and _Y
denote the differential calculations. The linear tire forces can be cal-
culated as follows:

Fyf ¼ Caf d� ðvþlf reÞ cosw_Xþv sinw

� �
Fyr ¼ Car � ðv�lrreÞ cosw_Xþv sinw

� �
8><
>: ð13Þ

where Caf and Car are the cornering stiffnesses of the front and rear
tires, respectively; and d is the front wheel steering angle. It should
be noted that the kinematics and dynamics models of the ego vehi-
cle in this study can be directly transferred to the Frenet coordinate
system through coordinate transformation.

4.1.2. Driving behavior interpretation
When using MPC to plan the motions of the desired driving

behavior, another important issue is how to model the behavior
as an optimization objective with constraints that MPC can
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understand. Since the desired longitudinal and lateral positions of
the ego vehicle reflect the most important characteristics of the
lane-keeping and lane-changing behaviors, we select the longitudi-
nal and lateral positions as state variables and carry out motion
planning in the MPC prediction horizon to track the desired posi-
tion signals that reflect the desired decision-making commands
in real time.

In the prediction horizon, the state, output, and control vectors
of the longitudinal and lateral motions are defined as follows:

xlon ¼ X; vX½ �T; ylon ¼ X; ulon ¼ aX
xlat ¼ v w re Y½ �T; ylat ¼ Y ;ulat ¼ d

(
ð14Þ

where xlon, ylon, and ulon are the longitudinal model variables; and
xlat, ylat, and ulat belong to the lateral model. The time-discrete pre-
diction model with a longitudinal time step tp;lon and a lateral step
tp;lat is defined as follows:

xlon;klonþ1 ¼ Alonxlon;klon þ Blonulon;klon þ C lon

ylon;klonþ1 ¼ Cc;lonxlon;klonþ1; klon ¼ 0;1; :::;Np;lon � 1
xlat;klatþ1 ¼ Alatxlat;klat þ Blatulat;klat þ C lat

ylat;klatþ1 ¼ Cc;latxlat;klatþ1; klat ¼ 0;1; :::;Np;lat � 1

8>>><
>>>:

ð15Þ

where klon and klat are time indexes in longitudinal and lateral pre-
dictions, respectively; Alon, Blon, C lon, Cc;lon, Alat, Blat, C lat; and Cc;lat are
system matrixes; Np;lon and Np;lat are the longitudinal and lateral
prediction horizons, and

Alon ¼
1 tp;lon
0 1

� 	
;Blon ¼

0
tp;lon

� 	
; C lon ¼

0
0

� 	
;Cc;lon ¼ 1; 0½ � ð16Þ

The matrixes Alat, Blat, C lat, and Cc;lat can be calculated by lin-
earizing the lateral nonlinear dynamics model of the ego vehicle
[22].

The desired longitudinal and lateral positions of different driv-
ing behaviors are shown in Fig. 4. The lane width W lane is 4 m in
this study. The desired longitudinal position is determined based
on a safe distance from all the front vehicles. The desired lateral
position comes from the decision-making command, which is also
the lateral position of the centerline of the target lane. In the pre-
diction horizon, the desired longitudinal and lateral positions can
be defined as follows:

Xref;klonþ1 ¼ Xref;t

Y ref;klatþ1 ¼ Y ref;t



ð17Þ

where Xref;t and Xref;t are the desired positions at t.

4.2. MPC-based motion planning problem formulation

4.2.1. Optimization problem statement
The objective function of MPC-based motion planning in this

study is defined as follows:

Jtðxt ;ut�tp Þ ¼
XNp

i¼1kytþitp tj � yref;tþitp tj k
2

Q
þ
XNc�1

j¼0 kutþjtp tj k2Ru

þ
XNc�1

j¼0 kDutþjtp tj k2Rdu
ð18Þ
Fig. 4. Interpretation of driving behavior. ds1, ds2, and ds3: the safe distances; Xref ,
Y ref : the desired positions.
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where tp is the prediction time step; Np is the prediction horizon; Nc

is the control horizon; Q is the weighting matrix to pursue the
desired driving decision command; and Ru and Rdu are the weight-
ing matrixes to minimize the control and its jerk, respectively,
which are related to driving comfort. On this basis, the constrained
MPC optimization problem is formulated as follows:

min
DUt

Jt xt ;ut�tp ;DUt
� �

s:t: xtþitp t;minj � xtþitp tj � xtþitp t;maxj
ytþitp t;minj � ytþitp tj � ytþitp t;maxj
utþitp t;minj � utþitp tj � utþitp t;maxj
Dutþitp t;minj � Dutþitp tj � Dutþitp t;maxj

ð19Þ

where DUt is the control vector and

DUt ¼ Dut tj ; Dutþtp tj ; . . . ; Dutþ Np�1ð Þtp tj
h iT

Dutþjtp tj ¼ utþjtp tj � utþ j�1ð Þtp tj

8<
: ð20Þ

The above problem is then applied to the longitudinal and the
lateral motion planning, respectively, of the ego vehicle.

4.2.2. Constraints setting
Autonomous driving must satisfy physical constraints related to

the physical performance of the vehicle and task constraints
related to driving tasks, so as to achieve safe, comfortable, and
stable driving. The physical constraints include the acceleration-
related constraints, constraints related to the front wheel steering
angle, and the sideslip angle constraints of the tire model. Substi-
tuting aX , d, af , and ar into Eqs. (19) and (20), the upper and lower
bounds are defined as follows:

aX;tþitp;lon t;minj � aX;tþitp;lon tj � aX;tþitp;lon t;maxj
DaX;tþitp;lon t;minj � DaX;tþitp;lon tj � DaX;tþitp;lon t;maxj
dmin � dtþjtp;lat tj � dmax

Ddmin � Ddtþjtp;lat tj � Ddmax

af ;min � af ;tþitp;lat tj � af;max

ar;min � ar;tþitp;lat tj � ar;max

8>>>>>>>>><
>>>>>>>>>:

ð21Þ

where tp;lon and tp;lat are longitudinal and lateral prediction time
steps, respectively.

It is notable that the above jerk constraints on the acceleration
and the front wheel angle can also be regarded as comfort and sta-
bility constraints, from the perspective of driving tasks. The other
comfort constraint is the lateral acceleration constraint, which is
defined as follows:

ay; t þ itp;lat tj y;maxy;min
ð22Þ

In addition to the above constraints, traffic rules are considered.
Thus, the road speed limit constraint is defined as follows:

vX; t þ itp;lon tj X;tþitp;lon tj ;maxX;tþitp;lon tj ;min
ð23Þ

The aim is to imitate the comfortable acceleration and deceler-
ation behavior of human drivers. Thus, in the process of accelera-
tion, the changing rate of the acceleration gradually decreases
with the increase in acceleration, while in the process of decelera-
tion, the changing rate of the acceleration gradually decreases with
the decrease in acceleration. This avoids the discomfort caused by
continuously stepping on the accelerating or braking pedal. There-
fore, the acceleration jerk constraint is defined as follows:

DaX;tþitp;lon t;minj ¼ w1 aX;tþitp;lon t;minj � aX
� �

DaX;tþitp;lon t;maxj ¼ w2 aX;tþitp;lon t;maxj � aX
� �

8><
>: ð24Þ

where w1 and w2 are weighting coefficients.
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In addition, the longitudinal and lateral safety constraints of
driving behavior determine the safety of the entire decision-
making and planning system; they are also the safety basis for
online trial-and-error by the RL agent. This part will be introduced
in the next section.
Fig. 6. The rational exploration and exploitation scheme.
5. Safe and rational exploration and exploitation

To realize the online evolution of autonomous driving in the
operating stage, the safety and the rationality of driving explo-
ration and exploitation are two major principles that must be
obeyed. These principles are the key factors that affect the safety,
comfort, and trust of the driver and passengers in online autono-
mous driving. This section introduces the corresponding modeling
methods for these two principles, including predictive safe-driving
envelope modeling and a rational exploration and exploitation
scheme.

5.1. A predictive safe-driving envelope

Safety is the primary principle. To ensure the strict safety of the
autonomous vehicle during its evolution, this study proposes the
introduction of longitudinal and lateral safety requirements of
driving behavior into the MPC problem in the form of hard con-
straints. These safety constraints are modeled as a predictive
safe-driving envelope, as shown in Fig. 5, where the blue areas rep-
resent the safe spaces for the ego vehicle in different lanes, and the
longitudinal envelope boundary is determined according to the
shorter one of the safe spaces in different lanes.

Therefore, the longitudinal and lateral position constraints in
the MPC prediction horizon are defined as follows:

Xtþitp;lon t;minj � Xtþitp;lon tj � Xtþitp;lon t;maxj
Ymin � Ytþitp;lat tj � Ymax

(
ð25Þ
5.2. A rational exploration and exploitation scheme

Based on the safe envelope, this study further proposes a
rational exploration and exploitation mechanism based on trial-
and-error of the desired decision. In this mechanism, the success
of the trial-and-error means that the planning layer can immedi-
ately implement safe planning to execute the desired decision;
otherwise, failed trials mean that the desired decision cannot be
Fig. 5. The predictive safe-driving envelope.
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executed immediately in a safe way. The working principle is
shown in Fig. 6.

It is only when the longitudinal motion planning of the desired
decision has a feasible solution that the optimized longitudinal
acceleration is executable; then, the corresponding desired lane
centerline can be pursued through lateral motion planning. Other-
wise, the longitudinal motion planning of the original decision
(e.g., lane keeping) will be conducted and executed, and the lateral
motion planning will lead the ego vehicle to track the original lane
centerline. More specifically, the rational exploration and exploita-
tion module is designed based on the criterion of longitudinal driv-
ing planning priority. This is intended to mimic the driving habits
of humans. Usually, human drivers will prioritize the estimation of
the longitudinal safety of the vehicle motion. If the decision made
does not affect the longitudinal safety, then the decision can be
used as one of the candidate decisions; if the decision affects the
longitudinal safety, then the decision will not be executed. For
example, when the vehicle is in the lane-keeping state, if it wants
to change to the left lane, it can first use the MPC to carry out the
longitudinal planning of the left lane changing behavior. If the lon-
gitudinal planning can obtain a reasonable optimal acceleration at
the MPC algorithm level, this indicates that the optimal accelera-
tion is safe and can be implemented; thus, the left lane change
decision can be implemented. The optimal acceleration can be
determined by whether the MPC has an optimal solution that sat-
isfies the constraints. Furthermore, an acceleration limit interval
related to comfort can be also introduced to evaluate qualities of
MPC solutions. For example, if the deceleration obtained by the
optimization is less than a certain threshold or the acceleration is
greater than a certain threshold, then the ultimate optimal acceler-
ation will not exist.

The proposed mechanism well describes a safe and rational
online trial-and-error mechanism for the learning and evolution
process of human drivers in the real world. For example, when
driving, novice drivers usually constantly use trial-and-error driv-
ing behaviors and interact with surrounding vehicles so as to
increase their driving experience and improve their driving ability.
In this trial-and-error process, human drivers always attempt to
drive their vehicle normally and stably to ensure safety, instead
of driving by means of random unsafe exploration, as a traditional
RL agent usually does. It should be noted that the ‘‘trial-and-error”
in traditional RL refers to the agent utilizing randomization meth-
ods to enhance its exploration of unknown states or actions when
making decisions, so as to increase the possibility of policy
improvement. However, the goal of the trial-and-error mechanism
of the MPC planning layer in this study is to imitate the process
human drivers use to improve their driving skills.
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6. Case study

In this section, the proposed method is verified by using a high-
fidelity dynamics model, including a performance verification of
the proposed framework and an analysis of the effects of key
parameters.

6.1. Simulation setup

The Sim-to-Real problem is one of the challenges that restrict
the extensive application of RL in real-world autonomous driving.
This problem stems from the unreality of environment perception
and vehicle dynamics in a simulation and training environment.
Since the environment states are the relative positions and veloci-
ties of the surrounding vehicles rather than image information, this
study uses a high-fidelity dynamics model and constructs a train-
ing environment using MATLAB/Simulink in order to truly reflect
the dynamics of an autonomous vehicle in the real world as much
as possible. This simulation scheme is capable of simulating the
continuous learning and evolution process of autonomous driving
in the real world.

In the RL algorithm, the replay buffer size is 100 000, the batch
size is 32, the target network updating interval is 100, and the neu-
ral network is a fully connected network with a size of
16 � 50 � 50 � 1. Other simulation parameters are listed in
Table 1.

6.2. Results and analysis

Here, we first verify the effectiveness of the algorithm in stable
and unstable traffic flow in case 1, including the evolution perfor-
mance and safety performance. Next, in cases 2 and 3, we discuss
the effects of the driving style of the planning layer and the traffic
flow density on the performance of the algorithm.

6.2.1. Case 1: Different average speeds of traffic flow
This case compares the effectiveness of the proposed frame-

work for different average speeds of traffic flow. The results are
provided in Fig. 7, where Figs. 7(a) and (b) show the results in
stable traffic flow with an average speed of 20 (case 1-A) and
40 km�h�1 (case 1-B), respectively. The blue, orange, and yellow
curves represent the average reward or speed within the past 1,
Table 1
Simulation parameters.

I: identity matrix; g: gravitational acceleration.
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30, and 60 min, respectively. Fig. 7(c) further shows the results
for the ego vehicle in an unstable traffic flow. The velocities of all
the traffic vehicles are randomly assigned between 20 and
50 km�h�1. The accelerations of the traffic vehicles are constrained
to be within �4 to 2 m�s�2, and are updated as follows:

atv ¼ ðv tv;f
2 � v tv

2Þ
2ðXtv;f � Xtv � dtv;sÞ ð26Þ

where Xtv and v tv are the longitudinal position and the longitudinal
velocity of the traffic vehicle, respectively; Xtv;f and v tv;f denote the
longitudinal position and velocity of the vehicle in front of the traf-
fic vehicle; and dtv;s refers to the safe distance. This setting is to sim-
ulate interactive driving behavior between vehicles in real traffic.

Because this paper focuses on the driving task in three-lane
traffic flow, and its goal is to maximize the traffic efficiency as
much as possible, the average speed is selected as the evaluation
index. The impact of decision-making instructions on traffic effi-
ciency is often in the long-term domain, reflecting the effect during
a future period, and it is difficult to describe the quality of a certain
decision using the instantaneous speed increase or decrease.
Therefore, in this paper, we choose to evaluate and analyze the
changes in the average speed within 1, 30, and 60 min, so as to
reflect the degree of evolution of the decision-making layer. As
can be seen from Figs. 7(a) and (b), with an increase in the training
time, the average speed of the ego vehicle gradually increases and
finally converges to a level about 10 km�h�1 above the designated
traffic flow speed (20 and 40 km�h�1). This means that, after online
training, the ego vehicle has already learned how to obtain acceler-
ation space through lane changing, so as to pursue a faster average
speed. These results show the learning and evolution of the ego
vehicle in its driving efficiency.

In this study, the acceleration capacity of the ego vehicle is
determined by longitudinal motion planning based on MPC, and
the maximum speed that can be achieved is determined by the
average speed and density of the traffic flow. The higher the aver-
age speed of the traffic flow is and the lower the density is, the
higher the equivalent longitudinal acceleration space of the ego
vehicle will be, allowing the vehicle to achieve a higher average
speed. Therefore, in this case, a stable traffic flow and fixed MPC
parameters theoretically determine a maximum upper bound of
the average speed in this environment. The goal of the DQN
decision-making is to encourage the ego vehicle to continuously
evolve to approach this maximum average speed, in theory. There-
fore, in the simulation results, the MPC parameters, traffic flow
characteristics, and DQN parameters jointly determine the level
to which the ego vehicle can evolve, which in this case is to a level
where the average speed exceeds the traffic flow speed by about
10 km�h�1. As a further validation of the proposed framework in
unstable traffic flow (case 1-C), Fig. 7(c) shows that, in the initial
stage of training, the average reward curves of different time scales
show a downward trend, because the agent prefers to explore to
obtain more diverse experiences. With an increase in the training
time, the average reward gradually increases and finally tends to
stabilize. It is worth noting that the upper bound of the reward is
determined by the average speed and density of the traffic flow,
to a certain extent, and the trend of the reward curve is also greatly
affected by the traffic flow.

For example, if a human driver encounters a traffic jam in a real
traffic environment, regardless of how the driver drives, the speed
will not be too high. During the training, the positions and veloci-
ties of traffic vehicles are random and time-varying, so the training
environment is uncertain, resulting in oscillation of the reward
curve. However, in general, with an increase in the training time,
the agent shows an obvious upward trend in reward and achieves
an obvious evolution. Consistent with the reward curve, the



Fig. 7. The results of case 1: different average speeds of traffic flow. (a) Traffic speed: 20 km�h�1; (b) traffic speed: 40 km�h�1; (c) unstable traffic speed.
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average longitudinal velocity of the ego vehicle decreases first and
then increases. Since the velocities of all the traffic vehicles are less
than 50 km�h�1, it can be seen that the average velocity of the ego
vehicle reaches about 57 km�h�1 in the later stage of training, which
indicates that the ego vehicle has evolved to achieve a higher veloc-
ity through lane-changing behaviors in unstable traffic flow. This
also reflects the online-evolution process of the ego vehicle.

To illustrate the safety performance, Fig. 8 presents the longitu-
dinal distance from the ego vehicle to the front and rear traffic
vehicles in the same lane, and the lateral position of the ego vehicle
in the whole training process in case 1-A. Fig. 9 shows the longitu-
dinal and lateral acceleration in the whole training process. It can
be seen from Fig. 8 that, during the whole training process, the dis-
tance from the front traffic vehicle is always above 0 and the dis-
tance from the rear traffic vehicle is always below 0. This means
that the ego vehicle does not collide with the traffic vehicles. More-
over, Fig. 8 shows that the ego vehicle never exceeds its lane
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boundaries (from �6 to 6 m). The distribution of vehicle’s lateral
positions changes with time, reflecting the trial-and-error behavior
of multiple desired decisions. The above results all benefit from the
safe driving envelope and the safe exploration and exploitation
mechanism, which utilize MPC hard constraints to ensure safety.
In addition, it can be seen from Fig. 9 that the longitudinal acceler-
ation is constrained from �0.4g to 0.2g (where g is gravitational
acceleration), and the lateral acceleration is always within 0.4g
(mainly from �0.02g to 0.02g, which achieves reasonable comfort
and stable longitudinal and lateral motion control.

As mentioned above, rational exploration and exploitation are
embodied in two aspects in this study. First, traditional RL uses
random exploration and repeated training. This is a mode of
‘‘knowing mistakes and making mistakes,” which allows vehicle
collisions. However, in autonomous driving, the online continuous
training has zero tolerance for the collision safety problem, and the
training cannot be reset back and forth. The proposed method,



Fig. 8. Safety validation results. (a) Longitudinal distance from the ego vehicle to the front and rear vehicles in the same lane; (b) the lateral position in the whole training
process.

Fig. 9. (a) Longitudinal and (b) lateral acceleration in the whole training process.
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which is an exploration mode of ‘‘knowing mistakes and correcting
mistakes,” is therefore needed. This mode simulates the learning
process of human drivers. For example, when novice drivers learn
lane-changing behavior, if they find that the lane-changing
instructions they want to execute will lead to a collision, they will
immediately give up on lane changing and return to lane keeping.
Second, every driving experience collected in the training includes
not only decision-making results but also planning results. The
planning layer in this study uses MPC to naturally imitate the pre-
dicted driving behavior of human drivers. For example, in longitu-
dinal motion planning, different following distances and their
bounds reflect the following styles of conservative or aggressive
drivers. This rational motion planning is the embodiment of the
anthropomorphic nature of exploring and exploitation.
117
6.2.2. Case 2: Different planning layer styles
This case compares the effects of different MPC parameters of

the planning layer on the proposed framework, which imitate con-
servative and aggressive human driving styles. The results are
shown in Fig. 10. In case 2-A (shown in Fig. 10(a)), which imitates
a conservative style, the longitudinal maximum position and the
desired distance from the front vehicle in the MPC prediction hori-
zon are 10 and 25 m, respectively. In case 2-B (shown in Fig. 10(b)),
which represents an aggressive style, these parameters are 5 and
15 m, respectively. The average speed of the traffic flow is
40 km�h�1 in both cases 2-A and B.

Figs. 10(a) and (b) respectively correspond to the online training
results of the ego vehicle based on a conservative and an aggressive
MPC planning layer. In both cases, the ego vehicle can gradually



Fig. 10. Results of case 2: different planning layer styles. (a) Conservative planning layer based on MPC; (b) aggressive planning layer based on MPC.
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evolve to exceed the average speed of the traffic flow by about
10 km�h�1. However, the MPC planning layer in case 2-A has a
larger longitudinal maximum position and a further desired posi-
tion from the front vehicle than that in case 2-B, so its acceleration
space is shorter. This causes a relatively conservative planning per-
formance, causing the average speed of the ego vehicle with a more
aggressive planning layer in case 2-B to converge faster, and the
final speed is slightly higher than that in case 2-A. Therefore, a
more aggressive planning level results in a higher maximum aver-
age speed being achieved by the whole decision-making and
motion planning system. This is consistent with the driving perfor-
mance of human drivers: The more aggressive drivers are, the
higher their utilization of the traffic flow free space is, and the
more they can pursue a higher average speed by changing lanes
frequently.
6.2.3. Case 3: Different traffic flow densities
This case compares the effects of traffic flow density on the pro-

posed framework. The results are shown in Fig. 11. The longitudi-
nal distance between the traffic vehicles in the same lane are 80
and 120 m in cases 3-A and B (shown in Figs. 11(a) and (b)), respec-
tively. The average speed of the traffic flow is 40 km�h�1 in both
cases.

As shown in Fig. 11, the final average speed of the ego vehicle in
case 3-A reaches 50 km�h�1, while the final average speed in case
3-B is 55 km�h�1. This finding shows that, at the same speed, sparse
traffic flow allows the ego vehicle to evolve so that it can reach a
higher average speed. This is because sparse traffic flow results
in a greater distance between traffic vehicles, which provides a lar-
ger longitudinal acceleration space in which the ego vehicle can
extend its acceleration time during lane keeping. It also increases
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the space for implementing lane-changing exploration. As a result,
the probability of successful lane changing is increased, which per-
mits the ego vehicle to extend the equivalent longitudinal space for
acceleration through continuous lane-changing behavior. Taken
together, these factors lead to an increase in the average speed of
the ego vehicle.
7. Conclusions

This study deals with the online learning and evolution problem
of decision-making and motion planning for autonomous driving
in the operating stage by developing a hybrid data- and model-
driven framework. This framework takes advantage of DRL’s high
self-learning capabilities and MPC’s ability to deal with safety con-
straints and MPC’s interpretability to develop a decision-making
module and motion planner. The two principles of safety and
rationality in the online evolution of autonomous driving in the
operating stage are further proposed, and a corresponding safe
and rational exploration and exploitation mechanism is designed.
This mechanism is able to filter out random and unsafe experi-
ences by masking unsafe actions so as to obtain high-quality train-
ing data with safe and human-like features. Moreover, based on
the proposed framework, continuous evolution of the decision-
making layer within the capability boundary of the planning layer
is realized, along with the maximum utilization of the capabilities
of the planning layer. Finally, safe and rational self-evolution of
autonomous driving is realized. The results show that the proposed
framework achieves the safe and rational online evolution of
autonomous driving to pursue higher traffic efficiency. More
specifically, it is found that ① the maximum speed that can be
achieved is determined by the average speed and density of the



Fig. 11. Results of case 3: different traffic flow densities. (a) Longitudinal distance between traffic vehicles in the same lane: 80 m; (b) longitudinal distance between traffic
vehicles in the same lane: 120 m.
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traffic flow, as well as the planning layer style; ② the more aggres-
sive the planning style is, the higher the utilization of the traffic
flow free space will be, and the more possible it is to pursue a
higher average speed by changing lanes frequently; and ③ sparse
traffic flow allows the ego vehicle to evolve to provide more accel-
erating space, so that it can reach a higher average speed.

In our future work, we will focus on enabling the agent to learn
the MPC parameters together with the proposed framework to
improve the decision-making and motion planning flexibility; we
will also investigate more driving tasks under this framework
and conduct real vehicle experiments.
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