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In October 2022, machine learning experts at DeepMind
(London, UK), a subsidiary of Google (Mountain View, CA, USA),
reported a “breakthrough” on an extremely common mathematical
algorithm called matrix multiplication [1]. In previous years, Deep-
Mind has made headlines with its successes in using deep learning
to master various games, such as Go [2], chess, and even the strate-
gic board game Diplomacy, and, in a more recent and clearly prac-
tical application with its AlphaFold program [3], to spawn a
revolution in structural biology [4,5]. Now, the company claimed,
its AlphaTensor program had used reinforcement learning to turn
matrix multiplication into a “game” and discovered methods to
do it in fewer steps than any human had found, improving upon
a record in one case that had stood for more than 50 years.

Among experts on fast matrix multiplication, however, the
reaction has been mixed. “While the AlphaTensor work has not
advanced our scientific knowledge, it has generated interest in this
fundamental problem,” said J. M. Landsberg, professor of mathe-
matics at Texas A&M University in College Station, TX, USA. Other
experts are not so critical but said it is still far from certain that the
new algorithms discovered by AlphaTensor will make any practical
difference. It is impressive as a demonstration of the capabilities of
artificial intelligence (AI), but not particularly impressive as an
advance in mathematics. “That is the point—they are trying to
show just how powerful Al is,” said Landsberg. DeepMind declined
multiple requests to discuss the work.

“Matrix multiplication” refers to a way of multiplying two
arrays of numbers (matrices) to get a third matrix. It is a ubiquitous
operation in science and engineering, used to solve systems of lin-
ear equations and often to approximate solutions to nonlinear
equations, such as those that occur in computer simulations of
the climate, galaxies, or internal combustion engines. Indeed, it is
like a piston of computer science: a tool used so often it is some-
times taken for granted. Most mathematicians and computer sci-
entists learn a standard procedure for multiplying matrices when
they are university students. The procedure is a couple hundred
years old, but it was only in 1969 that Volker Strassen, a German
mathematician, discovered a better way to do it [6].

Better, in this case, means a way that involves less multiplica-
tion. For example, when multiplying a 2-by-2 matrix by a 2-by-2
matrix, the standard method requires you to multiply eight differ-
ent numbers together. There are also sums involved, but in a com-
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puter, multiplication is the more time-consuming operation.
Strassen, very surprisingly, discovered a way to multiply 2-by-2
matrices that requires only seven multiplications rather than eight
(Fig. 1). Even better, his method scales up very nicely. If you want
to multiply two 4-by-4 matrices, all you must do is divide them
into 2-by-2 blocks. Applying Strassen’s formula to a 4-by-4 matrix
reduces the computation to seven products of 2-by-2 matrices.
Applying it again to compute each of these products makes it 49
multiplications in all—a significant improvement over the 64 mul-
tiplications required by the textbook method for 4-by-4 matrices.
Using this iterative procedure, the number of operations to multi-
ply two N-by-N matrices can be reduced to N to the 2.8074 power,
a significant speedup compared to the textbook algorithm (which
requires N to the third power steps).

The exponent is important, said Landsberg. “It is a fundamental
constant of nature concerning how fast we can multiply matrices.
It is either equal to 2 or it is not 2. If it is 2, that basically means
that as matrices get large, they are almost as easy to multiply as
to add.” So far, mathematicians have whittled the number of steps
down to N to the 2.37188 power [7], using complicated algebraic
methods that involve a great deal of computer calculation but no
automated discovery. That was a tiny improvement over the
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Fig. 1. Left: Strassen’s algorithm for finding the product C of two 2-by-2 matrices
(A and B). Right: A compact representation of the algorithm as a 3-dimensional
tensor, a stack of three matrices, U, V, and W, which serves as a bookkeeping device
to show which products to write in each of the four slots in the 2-by-2 matrix of
product C. The key point is these matrices have only seven columns, with only seven
products to add up rather than the eight used in the textbook formula for
calculating C. Credit: Grey Ballard, with permission.
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previous best estimate, 2.37286—which gives you an idea of how
slow progress has been and how far we are from reducing the
exponent all the way to 2. Progress in the other direction—proving
that the constant is greater than 2 (if it is)—has been completely
nonexistent. One book calls this type of problem “complexity the-
ory’s Waterloo” [8].

Hence the extraordinary interest in DeepMind’s AlphaTensor
work. First, it gives a new paradigm for finding multiplication algo-
rithms: Do not bother teaching the computer math, just teach it
how to play games. Math is just another game. And second, once
a new algorithm is found, anybody can use it, even if they do not
have DeepMind’s giant computer resources

But is it a genuine breakthrough? The answer is complicated.
First, even Strassen’s algorithm is not as widely used as one might
expect. One reason is that it is not error-proof, especially if some
entries in the product matrix are zero or near zero. (The errors
can even be larger than the entry itself.) “This scares people off,”
said Grey Ballard, associate professor in computer science at Wake
Forest University in Winston-Salem, NC, USA. “I think they worry
more than they should, however, because they are doing other
computations that have less accuracy. Maybe the most compelling
example is deep learning: There are errors in the data, errors in the
iterative algorithm, and errors within the iteration. The require-
ments of matrix multiplication accuracy in this application are
very low.”

Another obstacle is sociological. Matrix multiplication is used as
a benchmark, one of a series of measurements that are used to
evaluate how fast a computer is. These benchmarks carry enor-
mous prestige for makers of supercomputers [9]. “The benchmark
outlaws the use of fast matrix multiplication,” Ballard said. “It is a
reasonable restriction because they want to benchmark the
machine, not the algorithm.” But the hidden cost is that program-
mers devote all their efforts to fine-tuning the standard algorithm
to run faster on their computer, rather than developing new fast
algorithms.

Despite these obstacles, a major improvement to fast matrix
multiplication would be expected to quickly make inroads against
the standard algorithm. So far, AlphaTensor has modestly
improved the procedure for multiplying two matrices in five cases,
two of which come with huge caveats. For 4-by-4 matrices, it can
compute the product in 47 steps instead of 49. But the new for-
mula only works to the extent of telling whether each of the
entries in the product matrix is even or odd. If you want actual
numerical values for your matrix product, rather than just “charac-
teristic two” values (i.e., even, or odd), you still must use 49 mul-
tiplications and there is no improvement at all over the Strassen
method.

The next case where AlphaTensor improved on the state of the
art is the case of multiplying a 4-by-5 matrix by a 5-by-4 matrix.
Here the program reduced the previous record from 64 multiplica-
tions to 63. However, this achievement soon became moot. Within
a week, Professor Manuel Kauers and PhD student Jakob
Moosbauer at Johannes Kepler University in Linz, Austria, achieved
a new record of 62 multiplications [10]. The work was performed
on a small computer with a human-devised search method they
called “flip graphs.” Though computer based, their search method
does not require anything resembling machine learning or Al It
does require a good starting point, because it is based on a random
walk through the space of possible algorithms, and it helps to start
with an algorithm that is already quite efficient.

Finally, in the case of 5-by-5 times 5-by-5 matrices,
AlphaTensor brought the record down from 98 to 96 multiplica-
tions, again only if one only cares about whether the matrix entries
are even or odd. In this case, too, Kauers and Moosbauer surpassed
the DeepMind work, with a method requiring only 95 multiplica-
tions. They commented that it took their small computer only a
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few seconds to run the search but acknowledged the advantage
of using the DeepMind algorithm as a starting point.

In short, the DeepMind work has not exactly proved that
machine learning is a better way to identify methods for more effi-
ciently multiplying matrices. Two of their five improvements were
superseded within days, and two of their five improvements were
limited to the characteristic-two case (determining whether each
entry in the matrix product is even or odd), which is, at best, a
niche application. “I do not know anyone who has taken their algo-
rithms and implemented them,” Ballard said. And in the realm of
abstract theory, their work has not improved our knowledge of
the “fundamental constant of nature” limiting how fast two matri-
ces can be multiplied. It remains stuck at 2.37188, where it was
before the DeepMind research.

However, it would be equally misleading to dismiss the work
completely. One positive outcome is that the AlphaTensor work
re-opens an approach to discovering new algorithms called “com-
binatorial search,” which had been considered too inefficient
because it does not scale well. The time spent searching for a better
algorithm increases exponentially with the size of the matrix.
“People have tried this, including me,” said Ballard. “I am
impressed that they can solve problems of this size using a combi-
natorial technique.”

Also, where there is one fast matrix multiplication algorithm,
there are almost always many. This means that different algo-
rithms could be used on different hardware, taking advantage of
whatever hidden strengths or weaknesses they might have. The
reinforcement learning technique might enable a machine to dis-
cover the matrix multiplication method that works best for it.

Finally, there is a possibility that sounds almost like science fic-
tion: The neural network could, in principle, use the new algorithm
to redesign itself. Neural networks, such as AlphaTensor, are orga-
nized into layers of “neurons,” each one feeding forward (or back-
ward) to the adjacent ones (Fig. 2). If one layer is fully connected to
the next, every node to every other node, then the method by
which the network propagates information from one layer to the
next is a matrix product. So AlphaTensor’s algorithms could, in
theory, be used to program the next generation of machines to
learn faster than it does. “Whether matrix multiplication is a
bottleneck depends on what kind of neural net you have,” said
Ballard. “I am sure that AlphaTensor has matrix multiplications
in there. So, they can definitely use it to make better neural
networks.”
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Fig. 2. A typical architecture for a neural network, with four layers of “neurons,” an
input layer (left), an output layer (right) and two hidden layers. In a fully connected
neural network, all the nodes in one layer connect to all the nodes in the next. In
this case, the procedure for computing one layer from the previous one begins by
taking a matrix product. Credit: Heiko Loewe (public domain).
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