Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2008, Volume 2, Issue 2 doi: 10.1007/s11705-008-0032-1

Catalytic cracking of endothermic fuels in coated tube reactor

Key Laboratory of Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University;

Available online: 2008-06-05

Next Previous

Abstract

Suspensoid of HZSM-5 or HY zeolites mixed with a self-made ceramic-like binder was coated on the inner wall of a tubular reactor by gas-aided fluid displacement technology. The coated zeolites were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The coating thickness is 10–20 ?m and the particle size of the zeolites is in the range of 1–5 ?m. In the coated reactor, cracking of endothermic fuels including -dodecane and aviation fuel RP-3 was carried out separately under supercritical conditions at 600°C and 625°C to investigate their heat sinks and conversion of catalytic reactions. For the reaction catalyzed by HY(25% mass fraction) coating, the heat sink capacity of -dodecane are 815.7 and 901.9 kJ/kg higher than that of the bare tube at 600°C and at 625°C, respectively. Conversion of -dodecane also increases from 42% to 60% at 600°C and from 66% to 80% at 625°C. The coated zeolite can significantly inhibit the carbon deposition during supercritical cracking reactions.

Related Research