Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 12 doi: 10.1007/s11705-023-2343-7

Construction of nitrogen-doped carbon cladding LiMnO film electrode with enhanced stability for electrochemically selective extraction of lithium ions

Received: 2023-03-20 Accepted: 2023-10-07 Available online: 2023-10-07

Next Previous

Abstract

Reducing the dissolution of Mn from LiMn2O4 (LMO) and enhancing the stability of film electrodes are critical and challenging for Li+ ions selective extraction via electrochemically switched ion exchange technology. In this work, we prepared a nitrogen-doped carbon cladding LMO (C-N@LMO) by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose. The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode. The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42% compared to the LMO film electrode after 10 cycles. The cladding layer not only acted as a protective layer but also functioned as a conductive shell, accelerating the migration rate of Li+ ions. The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ ions, which was 33% less compared to the pure LMO film electrode. Meanwhile, the C-N@LMO film electrode retained evident selectivity toward Li+ ions, and the separation factor was 118.38 for Li+ toward Mg2+ in simulated brine. Therefore, the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ ions from salt lakes.

Related Research