Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 29, Issue 10 doi: 10.1016/j.eng.2022.12.012

Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation

a Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
b Zhejiang University School of Medicine, Hangzhou 310058, China
c Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
d Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
e Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
f National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

# These authors contributed equally to this work.

Received: 2022-10-25 Revised: 2022-12-18 Accepted: 2022-12-30 Available online: 2023-04-14

Next Previous

Abstract

Hepatocellular carcinoma (HCC) is the most common malignancy of the liver, posing a significant threat to public health. Although liver transplantation (LT) is an effective treatment for HCC, ischemia–reperfusion (I/R) injury, transplant rejection, and complications after LT can greatly reduce its effectiveness. In recent years, transplant oncology has come into being, a comprehensive discipline formed by the intersection and integration of surgery, oncology, immunology, and other related disciplines. Gut microbiota, an emerging field of research, also plays a crucial role. Through the microbiome–gut–liver axis, the gut microbiota has an impact on the onset and progression of HCC as well as LT. This review summarizes the mechanisms by which the gut microbiota affects HCC and its bidirectional interactions with chronic liver disease that can develop into HCC as well as the diagnostic and prognostic value of the gut microbiota in HCC. In addition, gut microbiota alterations after LT were reviewed, and the relationship between the gut microbiota and liver I/R injury, the efficacy of immunosuppressive drugs used, and complications after LT were discussed. In the era of LT oncology, the role of the gut microbiota in HCC and LT should be emphasized, which can provide new insights into the management of HCC and LT via gut microbiota modulation.

Figures

图1

图2

References

[ 1 ] Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7(1):6. link1

[ 2 ] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72(1):7‒33. link1

[ 3 ] Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996;334(11):693‒9. link1

[ 4 ] Tsilimigras DI, Bagante F, Moris D, Merath K, Paredes AZ, Sahara K, et al. Defining the chance of cure after resection for hepatocellular carcinoma within and beyond the Barcelona Clinic Liver Cancer guidelines: a multiinstitutional analysis of 1,010 patients. Surgery 2019;166(6):967‒74. link1

[ 5 ] Mirza DF. Systematic review of outcome of downstaging hepatocellular cancer before liver transplantation in patients outside the Milan criteria (Br J Surg 2011; 98: 1201‒1208). Br J Surg 2011;98(9):1209. link1

[ 6 ] Xu X, Lu D, Ling Q, Wei X, Wu J, Zhou L, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut 2016;65 (6):1035‒41. link1

[ 7 ] Hibi T, Shinoda M, Itano O, Kitagawa Y. Current status of the organ replacement approach for malignancies and an overture for organ bioengineering and regenerative medicine. Organogenesis 2014;10(2):241‒9. link1

[ 8 ] Hibi T, Itano O, Shinoda M, Kitagawa Y. Liver transplantation for hepatobiliary malignancies: a new era of “Transplant Oncology” has begun. Surg Today 2017;47(4):403‒15. link1

[ 9 ] Mehta N, Bhangui P, Yao FY, Mazzaferro V, Toso C, Akamatsu N, et al. Liver transplantation for hepatocellular carcinoma. Working group report from the ILTS Transplant Oncology Consensus Conference. Transplantation 2020;104(6):1136‒42. link1

[10] Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016;22(10):1079‒89. link1

[11] Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 2020;8(1):36. link1

[12] Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, et al. Gut‒liver axis: how do gut bacteria influence the liver? Med Sci 2018;6(3):79. link1

[13] Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The gut‒liver axis in immune remodeling: new insight into liver diseases. Int J Biol Sci 2020;16(13):2357‒66. link1

[14] Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol 2020;245(3):425‒37. link1

[15] Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiomemediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018;360(6391):eaan5931. link1

[16] Ohtani N, Hara E. Gut‒liver axis-mediated mechanism of liver cancer: a special focus on the role of gut microbiota. Cancer Sci 2021;112(11):4433‒43. link1

[17] Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019;68(6):1014‒23. link1

[18] Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med 2020;12(1):102. link1

[19] Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017;474(11):1823‒36. link1

[20] Tian X, Yang Z, Luo F, Zheng S. Gut microbial balance and liver transplantation: alteration, management, and prediction. Front Med 2018;12(2):123‒9. link1

[21] Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell 2010;1(8):718‒25. link1

[22] Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021;39(1):105‒14. link1

[23] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, DiversityKnight R., stability and resilience of the human gut microbiota. Nature 2012;489(7415):220‒30. link1

[24] Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019;76(3):473‒93. link1

[25] Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 2022;3(12):e969‒83. link1

[26] Coker OO, Wu WKK, Wong SH, Sung JJ, Yu J. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 2020;159(4):1459‒70.e5. link1

[27] Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590. link1

[28] Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients 2020;12(10):2982. link1

[29] Sugihara K, Kamada N. Diet‒microbiota interactions in inflammatory bowel disease. Nutrients 2021;13(5):1533. link1

[30] Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155(7):1451‒63. link1

[31] Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 2022;135(5):584‒90. link1

[32] Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R. Hepatocellular carcinoma immunotherapy and the potential influence of gut microbiome. Int J Mol Sci 2021;22(15):7800. link1

[33] Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S, et al. USP22 promotes hypoxiainduced hepatocellular carcinoma stemness by a HIF1a/USP22 positive feedback loop upon TP53 inactivation. Gut 2020;69(7):1322‒34. link1

[34] Doe WF. The intestinal immune system. Gut 1989;30(12):1679‒85. link1

[35] Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol 2017;10(2):307‒17. link1

[36] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805‒20. link1

[37] Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015;421:44‒53. link1

[38] Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014;41(2):296‒310. link1

[39] Liu WT, Jing YY, Yu GF, Han ZP, Yu DD, Fan QM, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett 2015;358(2):136‒43. link1

[40] Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012;21(4):504‒16. link1

[41] Ayling RM, Kok K. Fecal calprotectin. Adv Clin Chem 2018;87:161‒90. link1

[42] Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2019;69(1):107‒20. link1

[43] Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, et al. Molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer. Front Cell Dev Biol 2021;9:702414. link1

[44] Visekruna A, Luu M. The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Front Cell Dev Biol 2021;9:703218. link1

[45] Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolicepigenetic crosstalk in lymphocytes. Nat Commun 2019;10(1):760. link1

[46] McBrearty N, Arzumanyan A, Bichenkov E, Merali S, Merali C, Feitelson M. Short chain fatty acids delay the development of hepatocellular carcinoma in HBx transgenic mice. Neoplasia 2021;23(5):529‒38. link1

[47] Hu C, Xu B, Wang X, Wan WH, Lu J, Kong D, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology 2023;77(1):48‒64. link1

[48] Singh V, San Yeoh B, Chassaing B, Xiao X, Saha P, Olvera RA, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018;175(3). 679 94.e22. link1

[49] Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021;139:111619. link1

[50] Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016;41(3):211‒8. link1

[51] De la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019;9:1143. link1

[52] Zhang W, Chen Z, Xue C, Zhang Y, Wu L, Zhu J, et al. The applicability of ADA, AFU, and LAC in the early diagnosis and disease risk assessment of hepatitis B-associated liver cirrhosis and hepatocellular carcinoma. Front Med 2021;8:740029. link1

[53] Gu Y, Ji F, Liu N, Zhao Y, Wei X, Hu S, et al. Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. J Exp Clin Cancer Res 2020;39(1):268. link1

[54] Cao W, Kayama H, Chen ML, Delmas A, Sun A, Kim SY, et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity 2017;47(6):1182‒96.e10. link1

[55] Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, Baulies A, Nuñez S, Monte MJ, et al. STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J Hepatol 2021;74(6):1429‒41. link1

[56] Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol 2022;77(2):453‒66. link1

[57] Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesityinduced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499(7456):97‒101. link1

[58] Bruix J, Sherman M; the American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53(3):1020‒2. link1

[59] El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011;365(12):1118‒27. link1

[60] Liu B, Zhou Z, Jin Y, Lu J, Feng D, Peng R, et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J Immunother Cancer 2022;10(1):e003069. link1

[61] Li S, Han W, He Q, Zhang W, Zhang Y. Relationship between intestinal microflora and hepatocellular cancer based on gut‒liver axis theory. Contrast Media Mol Imaging 2022;2022:6533628. link1

[62] Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 2016;6(1):32002. link1

[63] Leung H, Long X, Ni Y, Qian L, Nychas E, Siliceo SL, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med 2022;14(648):eabk0855. link1

[64] Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017;25(5):1054‒62.e5. link1

[65] Yu JS, Youn GS, Choi J, Kim CH, Kim BY, Yang SJ, et al. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin Transl Med 2021;11(12):e634. link1

[66] Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 2009;4(9): e6958. link1

[67] Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008;48(6):983‒92. link1

[68] Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Königsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 2008;138(8):1452‒5. link1

[69] Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in Germ-free mice. Proc Natl Acad Sci USA 2007;104(3):979‒84. link1

[70] Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 2013;8(1):e53028. link1

[71] Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016;65(5):830‒9. link1

[72] Brandl K, Hartmann P, Jih LJ, Pizzo DP, Argemi J, Ventura-Cots M, et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 2018;69(2):396‒405. link1

[73] Jiang L, Lang S, Duan Y, Zhang X, Gao B, Chopyk J, et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 2020;72(6): 2182‒96. link1

[74] Hsu CL, Zhang X, Jiang L, Lang S, Hartmann P, Pride D, et al. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol Commun 2022;6(8):2058‒69. link1

[75] Yan AW, Fouts DE, Brandl J, Stärkel P, Torralba M, Schott E, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011;53(1):96‒105. link1

[76] Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and nonalcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol 1987;4(1):8‒14. link1

[77] Llorente C, Jepsen P, Inamine T, Wang L, Bluemel S, Wang HJ, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun 2017;8(1):837. link1

[78] Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019;575(7783):505‒11. link1

[79] Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110(22): 9066‒71. link1

[80] Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018;67(5):891‒901. link1

[81] Liu Q, Li F, Zhuang Y, Xu J, Wang J, Mao X, et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog 2019;11(1):1. link1

[82] Wang X, Li MM, Niu Y, Zhang X, Yin JB, Zhao CJ, et al. Serum zonulin in HBVassociated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Dis Markers 2019;2019:5945721. link1

[83] Sultan S, El-Mowafy M, Elgaml A, El-Mesery M, El Shabrawi A, Elegezy M, et al. Alterations of the treatment-naive gut microbiome in newly diagnosed hepatitis C virus infection. ACS Infect Dis 2021;7(5):1059‒68. link1

[84] Pérez-Matute P, Íñiguez M, Villanueva-Millán MJ, Recio-Fernández E, Vázquez AM, Sánchez SC, et al. Short-term effects of direct-acting antiviral agents on inflammation and gut microbiota in hepatitis C-infected patients. Eur J Intern Med 2019;67:47‒58. link1

[85] Heidrich B, Vital M, Plumeier I, Döscher N, Kahl S, Kirschner J, et al. Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int 2018;38(1):50‒8. link1

[86] Drenick EJ, Fisler J, Johnson D. Hepatic steatosis after intestinal bypass— prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 1982;82(3):535‒48. link1

[87] Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol 2013;59(1):160‒8. link1

[88] Meroni M, Longo M, Dongiovanni P. Alcohol or gut microbiota: who is the guilty? Int J Mol Sci 2019;20(18):4568. link1

[89] Cresci GA, Glueck B, McMullen MR, Xin W, Allende D, Nagy LE. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol 2017;32(9):1587‒97. link1

[90] Chen Y, Tian Z. HBV-induced immune imbalance in the development of HCC. Front Immunol 2019;10:2048. link1

[91] Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C virus and hepatocellular carcinoma: a narrative review. J Clin Transl Hepatol 2018;6(1):79‒84. link1

[92] McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011;30(17):1969‒83. link1

[93] Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018;68(3):526‒49. link1

[94] Deng T, Li J, He B, Chen B, Liu F, Chen Z, et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatol Int 2022;16(1):99‒111. link1

[95] Albhaisi S, Shamsaddini A, Fagan A, McGeorge S, Sikaroodi M, Gavis E, et al. Gut microbial signature of hepatocellular cancer in men with cirrhosis. Liver Transpl 2021;27(5):629‒40. link1

[96] Huang R, Li T, Ni J, Bai X, Gao Y, Li Y, et al. Different sex-based responses of gut microbiota during the development of hepatocellular carcinoma in liverspecific Tsc1-knockout mice. Front Microbiol 2018;9:1008. link1

[97] Liu Z, Li Y, Li C, Lei G, Zhou L, Chen X, et al. Intestinal Candida albicans promotes hepatocarcinogenesis by up-regulating NLRP6. Front Microbiol 2022;13:812771. link1

[98] Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. the KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19(7):940‒52.

[99] Li L, Ye J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: a Chinese population-based study. Medicine 2020;99(37):e21788. link1

[100] Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer 2019;7(1):193. link1

[101] Lobanovska M, Pilla G. Focus: drug development: penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J Biol Med 2017;90(1):135‒45.

[102] Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 2017;7(5):522‒38. link1

[103] Singh V, Yeoh BS, Abokor AA, Golonka RM, Tian Y, Patterson AD, et al. Vancomycin prevents fermentable fiber-induced liver cancer in mice with dysbiotic gut microbiota. Gut Microbes 2020;11(4):1077‒91. link1

[104] Ginés P, Rimola A, Planas R, Vargas V, Marco F, Almela M, et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990;12(4 Pt 1):716‒24.

[105] Tandon P, Delisle A, Topal JE, Garcia-Tsao G. High prevalence of antibioticresistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol 2012;10(11):1291‒8. link1

[106] Fujinaga Y, Kawaratani H, Kaya D, Tsuji Y, Ozutsumi T, Furukawa M, et al. Effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci 2020;21(15):5589. link1

[107] Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14(9):527‒39. link1

[108] Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, Thumburu KK, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 2014;147(6): 1327‒37.e3. link1

[109] Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 2016;113(9):E1306‒15. link1

[110] Heydari Z, Rahaie M, Alizadeh AM. Different anti-inflammatory effects of Lactobacillus acidophilus and Bifidobactrum bifidioum in hepatocellular carcinoma cancer mouse through impact on microRNAs and their target genes. J Nutr Intermed Metab 2019;16:16100096. link1

[111] Mihailović M, Živković M, Jovanović JA, Tolinački M, Sinadinović M, Rajić J, et al. Oral administration of probiotic Lactobacillus paraplantarum BGCG11 attenuates diabetes-induced liver and kidney damage in rats. J Funct Foods 2017;38:38427‒37. link1

[112] Zhang HL, Yu LX, Yang W, Tang L, Lin Y, Wu H, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol 2012;57(4):803‒12. link1

[113] Elshaer AM, El-Kharashi OA, Hamam GG, Nabih ES, Magdy YM, Abd El Samad AA. Involvement of TLR4/CXCL9/PREX-2 pathway in the development of hepatocellular carcinoma (HCC) and the promising role of early administration of lactobacillus plantarum in Wistar rats. Tissue Cell 2019;60:38‒47. link1

[114] Nanis GA, Mohamed LS, Hassan E, Maii MN. Lactobacillus acidophilus and Bifidobacteria spp having antibacterial and antiviral effects on chronic HCV infection. Afr J Microbiol Res 2019;13(5):77‒90. link1

[115] Lee DK, Kang JY, Shin HS, Park IH, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res 2013;36(12):1525‒32. link1

[116] Gorbach SL, Barza M, Giuliano M, Jacobus NV. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis 1988;7(1):98‒102. link1

[117] Zhou D, Pan Q, Shen F, Cao HX, Ding WJ, Chen YW, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017;7(1):1529. link1

[118] Wang WW, Zhang Y, Huang XB, You N, Zheng L, Li J. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol 2017;23(38):6983‒94. link1

[119] Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109(7):1065‒71. link1

[120] Singal AK, Guturu P, Hmoud B, Kuo YF, Salameh H, Wiesner RH. Evolving frequency and outcomes of liver transplantation based on etiology of liver disease. Transplantation 2013;95(5):755‒60. link1

[121] Ling S, Zhan Q, Jiang G, Shan Q, Yin L, Wang R, et al. E2F7 promotes mammalian target of rapamycin inhibitor resistance in hepatocellular carcinoma after liver transplantation. Am J Transplant 2022;22(10): 2323‒36. link1

[122] Wu ZW, Ling ZX, Lu HF, Zuo J, Sheng JF, Zheng SS, et al. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int 2012;11(1):40‒50. link1

[123] Yu MH, Yu XL, Chen CL, Gao LH, Mao WL, Yan D, et al. The change of intestinal microecology in rats after orthotopic liver transplantation. Chin J Surg 2008;46(15):1139‒42. Chinese.

[124] Bajaj JS, Kakiyama G, Cox IJ, Nittono H, Takei H, White M, et al. Alterations in gut microbial function following liver transplant. Liver Transpl 2018;24(6):752‒61. link1

[125] Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, et al. Intestinal microflora in rats with ischemia/reperfusion liver injury. J Zhejiang Univ Sci B 2005;6(1):14‒21. link1

[126] Yu J, Liu Z, Li C, Wei Q, Zheng S, Saeb-Parsy K, et al. Regulatory T cell therapy following liver transplantation. Liver Transpl 2021;27(2):264‒80. link1

[127] Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transpl 2020;26(8):1034‒48. link1

[128] Wegorzewska MM, Glowacki RWP, Hsieh SA, Donermeyer DL, Hickey CA, Horvath SC, et al. Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen. Sci Immunol 2019;4(32):eaau9079. link1

[129] Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol 2007;19(6):377‒82. link1

[130] Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139(3):485‒98. link1

[131] Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 2022;603(7903):907‒12. link1

[132] Corbitt N, Kimura S, Isse K, Specht S, Chedwick L, Rosborough BR, et al. Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation‒reperfusion injury after orthotopic liver transplantation. Am J Pathol 2013;182(1):180‒91. link1

[133] Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 2006;12(46):7413‒20. link1

[134] Nakamura K, Kageyama S, Ito T, Hirao H, Kadono K, Aziz A, et al. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest 2019;129(8):3420‒34. link1

[135] Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232‒6. link1

[136] Han SJ, Kim M, Novitsky E, D’Agati V, Lee HT. Intestinal TLR9 deficiency exacerbates hepatic IR injury via altered intestinal inflammation and shortchain fatty acid synthesis. FASEB J 2020;34(9):12083‒99. link1

[137] Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020;17(12):719‒39. link1

[138] Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003;35(3 Suppl):7S‒14S. link1

[139] Han Y, Wu L, Ling Q, Wu P, Zhang C, Jia L, et al. Intestinal dysbiosis correlates with sirolimus-induced metabolic disorders in mice. Transplantation 2021;105(5):1017‒29. link1

[140] Tourret J, Willing BP, Dion S, MacPherson J, Denamur E, Finlay BB. Immunosuppressive treatment alters secretion of ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by uropathogenic Escherichia coli. Transplantation 2017;101(1):74‒82. link1

[141] Swarte JC, Li Y, Hu S, Björk JR, Gacesa R, Vich Vila A, et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci Transl Med 2022;14(660):eabn7566. link1

[142] Han CZ, Wei Q, Yang MF, Zhuang L, Xu X. The critical role of therapeutic plasma exchange in ABO-incompatible liver transplantation. Hepatobiliary Pancreat Dis Int 2022;21(6):538‒42. link1

[143] Wei RL, Fan GH, Zhang CZ, Chen KC, Zhang WH, Li CB, et al. Prognostic implication of early posttransplant hypercholesterolemia in liver transplantation for patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2022;S1499‒3872(22):00123.

[144] Lichtman SN, Keku J, Clark RL, Schwab JH, Sartor RB. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 1991;13(4):766‒72. link1

[145] Little R, Wine E, Kamath BM, Griffiths AM, Ricciuto A. Gut microbiome in primary sclerosing cholangitis: a review. World J Gastroenterol 2020;26 (21):2768‒80. link1

[146] Lemoinne S, Kemgang A, Ben Belkacem K, Straube M, Jegou S, Corpechot C, et al. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut 2020;69(1):92‒102. link1

[147] Tang R, Wei Y, Li Y, Chen W, Chen H, Wang Q, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018;67(3):534‒41. link1

[148] Li Y, Tang R, Leung PSC, Gershwin ME, Ma X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun Rev 2017;16(9):885‒96. link1

[149] Isaacs-Ten A, Echeandia M, Moreno-Gonzalez M, Brion A, Goldson A, Philo M, et al. Intestinal microbiome‒macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice. Hepatology 2020;72(6):2090‒108. link1

[150] Tabibian JH, O’Hara SP, Trussoni CE, Tietz PS, Splinter PL, Mounajjed T, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016;63(1):185‒96. link1

[151] Kim YC, Lee SJ. Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice. Toxicology 1998;128(1):53‒61. link1

[152] Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159(3):514‒29. link1

[153] Gong S, Lan T, Zeng L, Luo H, Yang X, Li N, et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol 2018;69(1):51‒9. link1

[154] Li Y, Lv L, Ye J, Fang D, Shi D, Wu W, et al. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol 2019;103(1):375‒93. link1

[155] Wang K, Lv L, Yan R, Wang Q, Jiang H, Wu W, et al. Bifidobacterium longum R0175 protects rats against D-galactosamine-induced acute liver failure. MSphere 2020;5(1):e00791‒e19. link1

[156] Yu L, Zhao XK, Cheng ML, Yang GZ, Wang B, Liu HJ, et al. Saccharomyces boulardii administration changes gut microbiota and attenuates D-galactosamine- induced liver injury. Sci Rep 2017;7(1):1359. link1

[157] Bajaj JS, Vargas HE, Reddy KR, Lai JC, O’Leary JG, Tandon P, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis. Clin Gastroenterol Hepatol 2019;17(4):756‒65.e3. link1

[158] Chen Y, Guo J, Qian G, Fang D, Shi D, Guo L, et al. Gut dysbiosis in acute-onchronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol 2015;30(9):1429‒37. link1

[159] Moreau R, Clària J, Aguilar F, Fenaille F, Lozano JJ, Junot C, et al. the CANONIC Study Investigators of the EASL Clif Consortium, the Grifols Chair, and the European Foundation for the Study of Chronic Liver Failure (EF Clif). Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J Hepatol 2020;72(4):688‒701.

[160] Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-onchronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013;144(7):1426‒37, 1437.e1‒9. link1

[161] Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S, Rehman A, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 2006;113(7):929‒37. link1

[162] Mitra S, Drautz-Moses DI, Alhede M, Maw MT, Liu Y, Purbojati RW, et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 2015;3(1):38. link1

[163] Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17 (1):49‒60. link1

[164] Carnevale R, Nocella C, Petrozza V, Cammisotto V, Pacini L, Sorrentino V, et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci Rep 2018;8(1):3598. link1

[165] Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016;165(1):111‒24. link1

[166] Duerschmied D, Canault M, Lievens D, Brill A, Cifuni SM, Bader M, et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factoralpha- converting enzyme (ADAM17). J Thromb Haemost 2009;7(7):1163‒71. link1

[167] Jäckel S, Kiouptsi K, Lillich M, Hendrikx T, Khandagale A, Kollar B, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017;130(4):542‒53. link1

[168] Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- mice. Circulation 2016;133(24):2434‒46. link1

[169] Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel antithrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol 2020;32:101500. link1

[170] Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals 2014;7(11):1008‒27. link1

[171] Kochhar G, Parungao JM, Hanouneh IA, Parsi MA. Biliary complications following liver transplantation. World J Gastroenterol 2013;19(19):2841‒6. link1

[172] Trebicka J, Bork P, Krag A, Arumugam M. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nat Rev Gastroenterol Hepatol 2021;18(3):167‒80. link1

[173] Yang F, Chen H, Gao Y, An N, Li X, Pan X, et al. Gut microbiota-derived shortchain fatty acids and hypertension: mechanism and treatment. Biomed Pharmacother 2020;130:110503. link1

[174] Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine 2020;52:102649. link1

[175] Kadri OE, Surblyte M, Chandran VD, Voronov RS. Is the endothelial cell responsible for the thrombus core and shell architecture? Med Hypotheses 2019;129:109244. link1

[176] Esmon CT. The interactions between inflammation and coagulation. Br J Haematol 2005;131(4):417‒30. link1

Related Research