Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 2 doi: 10.15302/J-SSCAE-2024.02.002

Development of Deep-Sea Underwater Technology and Equipment

1. College of Engineering, Ocean University of China, Qingdao 266100, Shandong, China; 

2. China Ship Research and Development Academy, Beijing 100101, China

Funding project:中国工程院咨询项目“水下工程技术装备与产业链发展战略研究”(2023-XZ-32),“深海装备技术体系及发展战略研究”(2023-XZ-06) Received: 2024-01-18 Revised: 2024-03-02 Available online: 2024-04-19

Next Previous

Abstract

Deep-sea underwater technology and equipment are crucial aspects to cognize the deep sea, exploit deep-sea resources, and protect the marine ecosystem. Expanding the deep-sea space faces complex environmental challenges and urgently requires support of high-level deep-sea underwater technologies and equipment. This study analyzes the components and demands for the deep-sea underwater technology and equipment and reviews the current status and development trends of the technology and equipment from four aspects: deep-sea observation/detection and perception, underwater construction, deep-sea oil and gas production, and deep-sea mineral resource collection. Moreover, this study analyzes the development status and engineering challenges in China, explores the key technology and equipment systems and key physical–mechanical mechanisms behind them, and summarizes the typical equipment and corresponding diagram. Additionally, the common key technologies of the deep-sea underwater equipment in China are summarized, including the intelligent and automation technology, precision component processing and manufacturing technology, high-precision positioning and navigation technology, high-speed communication technology, computational and analytical mechanics of large systems, and multiscale engineering design methods and technologies. Furthermore, countermeasures and suggestions are proposed aiming at achieving high-quality development of the deep-sea underwater technology and equipment in China: strengthening the top-level design of deep-sea underwater engineering to promote the establishment of a coordinating system for common key technologies, enhancing the industry influence of Chinese deep-sea underwater technical standards to explore the international market, promoting the construction of compatible and universal platforms with high quality, and training innovation professionals to provide support for the high-level development of the marine science and technology industry.

Figures

图1

图2

图3

图4

图5

References

[ 1 ] 刘超, 刘传岩, 刘健, 等‍‍. 水下油气生产系统概述及其发展现状 [J]‍. 石油工程建设, 2021, 47(6): 29‒34‍.
Liu C, Liu C Y, Liu J, et al‍. Overview and development status of subsea oil and gas production system [J]‍. Petroleum Engineering Construction, 2021, 47(6): 29‒34‍.

[ 2 ] 牟雨言‍. 水下油气生产控制系统风险分析与可靠性研究 [D]‍. 北京: 中国石油大学 (北京) (硕士学位论文), 2021‍.
Mu Y Y‍. Risk analysis and reliability research of subsea oil and gas production control system [D]‍. Beijing: China University of Petroleum (Beijing) (Master’s thesis), 2021‍.

[ 3 ] 马蕊, 赵修涛, 柳存根‍. 海洋水下立体观测技术装备发展研究 [J]‍. 中国工程科学, 2020, 22(6): 19‒25‍.
Ma R, Zhao X T, Liu C G‍. Development of marine equipment for underwater stereoscopic observation [J]‍. Strategic Study of CAE, 2020, 22(6): 19‒25‍.

[ 4 ] 董胜, 廖振焜, 于立伟, 等‍. 海洋科考装备技术发展战略研究 [J]‍. 中国工程科学, 2023, 25(3): 33‒41‍.
Dong S, Liao Z K, Yu L W, et al‍. Development strategy for marine scientific equipment and technologies [J]‍. Strategic Study of CAE, 2023, 25(3): 33‒41‍.

[ 5 ] 周守为‍. 以产学研深度融合 推进海洋石油科技创新高质量发展 [J]‍. 中国科技产业, 2023 (9): 3‒4‍.
Zhou S W‍. Promoting the innovation and quality development of offshore oil science and technology with the deep integration of industry‒university‒research [J]‍. Science & Technology Industry of China, 2023 (9): 3‒4‍.

[ 6 ] 李志刚, 贾鹏, 王洪海, 等‍. 水下生产系统发展现状和研究热点 [J]‍. 哈尔滨工程大学学报, 2019, 40(5): 944‒952‍.
Li Z G, Jia P, Wang H H, et al‍. Development trend and active research areas of subsea production system [J]‍. Journal of Harbin Engineering University, 2019, 40(5): 944‒952‍.

[ 7 ] 钱思成‍. 深水水下生产设施防腐设计综述 [J]‍. 海洋工程装备与技术, 2018, 5(2): 133‒137‍.
Qian S C‍. Summary for corrosion control design of deepwater subsea production facilities [J]‍. Ocean Engineering Equipment and Technology, 2018, 5(2): 133‒137‍.

[ 8 ] Zhang A M, Li S M, Cui P, et al‍. A unified theory for bubble dynamics [J]‍. Physics of Fluids, 2023, 35(3): 033323‍.

[ 9 ] 王军成, 孙继昌, 刘岩, 等‍. 我国海洋监测仪器装备发展分析及展望 [J]‍. 中国工程科学, 2023, 25(3): 42‒52‍.
Wang J C, Sun J C, Liu Y, et al‍. Research progress and prospect of marine monitoring instruments and equipment in China [J]‍. Strategic Study of CAE, 2023, 25(3): 42‒52‍.

[10] 李硕, 刘健, 徐会希, 等‍. 我国深海自主水下机器人的研究现状 [J]‍. 中国科学: 信息科学, 2018, 48(9): 1152‒1164‍.
Li S, Liu J, Xu H X, et al‍. Research status of autonomous underwater vehicles in China [J]‍. SCIENTIA SINICA Informationis, 2018, 48(9): 1152‒1164‍.

[11] 宋宪仓, 杜君峰, 王树青, 等‍. 海洋科学装备研究进展与发展建议 [J]‍. 中国工程科学, 2020, 22(6): 76‒83‍.
Song X C, Du J F, Wang S Q, et al‍. Research progress of marine scientific equipment and development recommendations in China [J]‍. Strategic Study of CAE, 2020, 22(6): 76‒83‍.

[12] 王家豪‍. 破碎锤水下清礁装备施工方式优化的有限元分析 [J]‍. 四川水利, 2022, 43(S2): 23‒27‍.
Wang J H‍. Finite element analysis on construction mode optimization for underwater reef clearing equipment with breaking hammer [J]‍. Sichuan Water Resources, 2022, 43(S2): 23‒27‍.

[13] 李江昊, 肖文生, 于文太, 等‍. 超深水打桩锤系统的可靠性分析与分配研究 [J]‍. 工程设计学报, 2023, 30(4): 485‒494‍.
Li J H, Xiao W S, Yu W T, et al‍. Reliability analysis and allocation research of ultra-deep water pile hammer system [J]‍. Chinese Journal of Engineering Design, 2023, 30(4): 485‒494‍.

[14] 王玮, 孙丽萍, 白勇‍. 水下油气生产系统 [J]‍. 中国海洋平台, 2009, 24(6): 41‒45‍.
Wang W, Sun L P, Bai Y‍. Investigation on subsea production systems [J]‍. China Offshore Platform, 2009, 24(6): 41‒45‍.

[15] 张智, 王博, 刘和兴, 等‍. 南海某深水高温高压气井SS-15型井口头系统薄弱点安全评价 [J]‍. 中国安全生产科学技术, 2023, 19(4): 107‒113‍.
Zhang Z, Wang B, Liu H X, et al‍. Safety evaluation on weak points of SS-15 wellhead system in a deep water high temperature and high pressure gas well in South China Sea [J]‍. Journal of Safety Science and Technology, 2023, 19(4): 107‒113‍.

[16] 孔一颖‍. 高达37层楼 钻井深度超马里亚纳海沟 全球最大海上钻井平台“蓝鲸一号” [J]‍. 海洋与渔业, 2018 (8): 32‒36‍.
Kong Y Y‍. The world’s largest offshore drilling rig, the Blue Whale I, is 37 stories high and drills deeper than the Marianas Trench [J]‍. Ocean and Fishery, 2018 (8): 32‒36‍.

[17] 汤晓勇, 陈俊文, 郭艳林, 等‍. 可燃冰开发及试采技术发展现状综述 [J]‍. 天然气与石油, 2020, 38(1): 7‒15‍.
Tang X Y, Chen J W, Guo Y L, et al‍. Development status of combustible ice mining and test production technologies [J]‍. Natural Gas and Oil, 2020, 38(1): 7‒15‍.

[18] Jones A T‍. Trends in deep seabed mining technology [J]‍. Offshore Technology, 2003, 11(1): 37‒40‍.

[19] 杨建民, 刘磊, 吕海宁, 等‍. 我国深海矿产资源开发装备研发现状与展望 [J]‍. 中国工程科学, 2020, 22(6): 1‒9‍.
Yang J M, Liu L, Lyu H N, et al‍. Deep-sea mining equipment in China: Current status and prospect [J]‍. Strategic Study of CAE, 2020, 22(6): 1‒9‍.

[20] 王国荣, 黄泽奇, 周守为, 等‍. 深海矿产资源开发装备现状及发展方向 [J]‍. 中国工程科学, 2023, 25(3): 1‒12‍.
Wang G R, Huang Z Q, Zhou S W, et al‍. Current status and development direction of deep-sea mineral resource exploitation equipment [J]‍. Strategic Study of CAE, 2023, 25(3): 1‒12‍.

[21] 常琳, 张永波, 马哲, 等‍. 深海稀土矿产资源研究现状及开发利用前景 [J]‍. 海洋地质前沿, 2022, 38(12): 1‒7‍.
Chang L, Zhang Y B, Ma Z, et al‍. Research frontiers in exploitation and utilization of rare earth mineral resources in the deep-sea sediments [J]‍. Marine Geology Frontiers, 2022, 38(12): 1‒7‍.

[22] 谢梦琪, 陈丹东, 余倩, 等‍. 深海采矿矿物处理技术及发展趋势研究 [J]‍. 现代矿业, 2021, 37(9): 139‒141, 152‍.
Xie M Q, Chen D D, Yu Q, et al‍. Research on mineral treatment technology and development trend of deep-sea mining [J]‍. Modern Mining, 2021, 37(9): 139‒141, 152‍.

[23] 邹丽, 孙佳昭, 孙哲, 等‍. 我国深海矿产资源开发核心技术研究现状与展望 [J]‍. 哈尔滨工程大学学报, 2023, 44(5): 708‒716‍.
Zou L, Sun J Z, Sun Z, et al‍. Deep-sea mining core technology in China: Current situation and prospects [J]‍. Journal of Harbin Engineering University, 2023, 44(5): 708‒716‍.

[24] 徐吉磊‍. 深海采矿扬矿管输送系统内流影响下的特性研究 [D]‍. 青岛: 山东科技大学(硕士学位论文), 2019‍.
Xu J L‍. Research on Characteristics of Lifting Pipe Conveying System under the Influence of Inflow in Deep-sea Mining [D]‍. Qingdao: Shandong University of Science and Technology (Master’s thesis), 2019‍.

[25] 陈秉正‍. “鲲龙500”采矿车履带行驶机构的研制与试验研究 [J]‍. 采矿技术, 2019, 19(5): 125‒128‍.
Chen B Z‍. Development and experimental study on crawler running mechanism of “Kunlong 500” mining vehicle [J]‍. Mining Technology, 2019, 19(5): 125‒128‍.

[26] 谢桂鑫‍. 基于空间偏移拉曼光纤探针研究 [D]‍. 桂林: 桂林电子科技大学(硕士学位论文), 2023‍.
Xie G X‍. Fiber probe based on spatially offset raman [D]‍. Guilin: Guilin University of Electronic Technology (Master’s thesis), 2023‍.

[27] 吴天元, 江丽霞, 崔光磊‍. 水下观测和探测装备能源供给技术现状与发展趋势 [J]‍. 中国科学院院刊, 2022, 37(7): 898‒909‍.
Wu T Y, Jiang L X, Cui G L‍. Status and trends of energy power supply technologies for underwater equipment [J]‍. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 898‒909‍.

[28] 王程‍. 3000米级海床式液压静力触探及取样系统研究 [D]‍. 济南: 山东大学(硕士学位论文), 2023‍.
Wang C‍. Research of 3000 m Seabed Cone Penetration Testing and Sampling System Based on Hydraulic Drive [D]‍. Jinan: Shandong University (Master’s thesis), 2023‍.

[29] 陈晓明, 蒋喻栓‍. 犁式挖沟机在海上施工作业技术研究与应用 [J]‍. 中国石油和化工标准与质量, 2023, 43(20): 184‒186‍.
Chen X M, Jiang Y S‍. Research and application of plow type trenchers in offshore construction operation technology [J]‍. China Petroleum and Chemical Standard and Quality, 2023, 43(20): 184‒186‍.

[30] 李书兆, 沈晓鹏, 李伟, 等‍. 水下沉箱冲淤特性模型实验研究 [J]‍. 中国海上油气, 2023, 35(3): 217‒226‍.
Li S Z, Shen X P, Li W, et al‍. Model experiment study on scouring and depositing characteristics around subsea caissons [J]‍. China Offshore Oil and Gas, 2023, 35(3): 217‒226‍.

[31] 陈斌, 张汝彬, 曹波波, 等‍. 水下控制系统技术在采油树先导试验中的应用 [J]‍. 中国海洋平台, 2023, 38(5): 75‒80‍.
Chen B, Zhang R B, Cao B B, et al‍. Application of subsea control system technology in domestic Christmas tree pilot test [J]‍. China Offshore Platform, 2023, 38(5): 75‒80‍.

[32] 蒋兵兵, 曹聚杭, 张捷, 等‍. 深水脐带缆预调试概述 [J]‍. 海洋工程装备与技术, 2023, 10(3): 13‒23‍.
Jiang B B, Cao J H, Zhang J, et al‍. Overview of deepwater umbilical pre-commissioning [J]‍. Ocean Engineering Equipment and Technology, 2023, 10(3): 13‒23‍.

[33] 李小艳, 程阳锐, 郑皓, 等‍. 新一代海底履带式集矿车“鲲龙500”行走性能分析 [J]‍. 矿冶工程, 2020, 40(5): 1‒4‍.
Li X Y, Cheng Y R, Zheng H, et al‍. Simulation analysis of the mobility of “Kunlong 500” deep sea crawler collector [J]‍. Mining and Metallurgical Engineering, 2020, 40(5): 1‒4‍.

[34] 彭建平‍. 多金属结核水力集矿机构离地高度控制研究 [J]‍. 矿冶工程, 2020, 40(3): 20‒23‍.
Peng J P‍. Research on controlling ground clearance of hydraulic collectors in polymetallic nodules mining [J]‍. Mining and Metallurgical Engineering, 2020, 40(3): 20‒23‍.

[35] 苏强, 吕海宁, 杨建民, 等‍. 履带式深海采矿车软底质行走性能分析 [J]‍. 海洋工程, 2022, 40(2): 162‒168‍.
Su Q, Lyu H N, Yang J M, et al‍. Analysis of the walking performance of tracked deep-sea mining vehicle on soft sediment [J]‍. The Ocean Engineering, 2022, 40(2): 162‒168‍.

[36] 李家彪, 王叶剑, 刘磊, 等‍. 深海矿产资源开发技术发展现状与展望 [J]‍. 前瞻科技, 2022, 1(2): 92‒102‍.
Li J B, Wang Y J, Liu L, et al. Current status and prospect of deep-sea mining technology [J]. Science and Technology Foresight, 2022, 1(2): 92‒102.

Related Research