Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 3 doi: 10.15302/J-SSCAE-2024.03.003

Development of Key Material System for Solid-State Batteries

1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. College of Materials Science and Opto-Electronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received: 2024-04-23 Revised: 2024-05-27

Next Previous

Abstract

The solid-state battery is crucial for achieving the next-generation batteries that possess high energy density, high safety, long service life, and low cost. Major countries and regions are rapidly advancing the research and industrial application of solid-state batteries. This study reviews the development status of key material systems for solid-state batteries worldwide from the aspects of technological, industrial, and supporting systems. It analyzes the technical development paths, industrial scales, and supporting systems of solid-state batteries in countries and regions including the United States, Europe, Japan, and Republic of Korea, and summarizes the development status and goals of the key material system for solid-state batteries in China. Our study reveals that the solid-state batteries are currently in a promotion stage in China, facing challenges in terms of key raw materials, breakthroughs in critical scientific and technological bottlenecks, mass production, and industrial application. To promote the development of solid-state batteries in China, we propose the following suggestions: (1) adhering to an overall staged-development strategy for solid-state batteries, (2) establishing national-level development programs and major scientific and technological projects for solid-state batteries, (3) promoting the construction of technology research and development institutions for solid-state batteries, (4) encouraging the market application and industrial transformation of solid-state batteries, and (5) optimizing the solid-state battery ecosystem.

Figures

图1

图2

图3

图4

图5

References

[ 1 ] Li Q, Yu X Q, Li H‍. Batteries: From China´s 13th to 14th Five-Year Plan [J]‍. eTransportation, 2022, 14: 100201‍.

[ 2 ] 黄学杰, 赵文武, 邵志刚, 等‍‍. 我国新型能源材料发展战略研究 [J]‍. 中国工程科学, 2020, 22(5): 60‒67‍.
Huang X J, Zhao W W, Shao Z G, et al‍. Development strategies for new energy materials in China [J]‍. Strategic Study of CAE, 2020, 22(5): 60‒67‍.

[ 3 ] Dunn B, Kamath H, Tarascon J M‍. Electrical energy storage for the grid: A battery of choices [J]‍. Science, 2011, 334(6058): 928‒935‍.

[ 4 ] 李泓, 许晓雄‍. 固态锂电池研发愿景和策略 [J]‍. 储能科学与技术, 2016, 5(5): 607‒614‍.
Li H, Xu X X‍. R & D vision and strategies on solid lithium batteries [J]‍. Energy Storage Science and Technology, 2016, 5(5): 607‒614‍.

[ 5 ] Yu X Q, Chen R S, Gan L Y, et al‍. Battery safety: From lithium-ion to solid-state batteries [J]‍. Engineering, 2023, 21(2): 9‒14‍.

[ 6 ] 李泓‍. 中国固态电池领域发展现状和未来挑战 [J]‍. 科学观察, 2023, 18(4): 5‒9‍.
Li H‍. Current development and future challenges in the field of solid-state batteries in China [J]‍. Science Focus, 2023, 18(4): 5‒9‍.

[ 7 ] 邢佳韵, 陈其慎, 张艳飞, 等‍. 我国锂及其下游动力电池产业链发展探讨 [J]‍. 中国工程科学, 2022, 24(3): 10‒19‍.
Xing J Y, Chen Q S, Zhang Y F, et al‍. Development of lithium and its downstream power battery industry chain in China [J]‍. Strategic Study of CAE, 2022, 24(3): 10‒19‍.

[ 8 ] Fenton D E, Parker J M, Wright P V‍. Complexes of alkali metal ions with poly (ethylene oxide) [J]‍. Polymer, 1973, 14(11): 589‍.

[ 9 ] Wright P V‍. Electrical conductivity in ionic complexes of poly (ethylene oxide) [J]‍. British Polymer Journal, 1975, 7(5): 319‒327‍.

[10] Armand M‍. Polymer solid electrolytes—An overview [J]‍. Solid State Ionics, 1983, 9: 745‒754‍.

[11] Goodenough J B, Hong H Y P, Kafalas J A‍. Fast Na+-ion transport in skeleton structures [J]‍. Materials Research Bulletin, 1976, 11(2): 203‒220‍.

[12] Bates J B, Dudney N J, Gruzalski G R, et al‍. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries [J]‍. Journal of Power Sources, 1993, 43(1/2/3): 103‒110‍.

[13] Inaguma Y, Chen L Q, Itoh M, et al‍. High ionic conductivity in lithium lanthanum titanate [J]‍. Solid State Communications, 1993, 86(10): 689‒693‍.

[14] Thangadurai V, Kaack H, Weppner W J F‍. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta) [J]‍. Journal of the American Ceramic Society, 2003, 86(3): 437‒440‍.

[15] Kamaya N, Homma K, Yamakawa Y, et al‍. A lithium superionic conductor [J]‍. Nature Materials, 2011, 10(9): 682‒686‍.

[16] Mizushima K, Jones P C, Wiseman P J, et al‍. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density [J]‍. Materials Research Bulletin, 1980, 15(6): 783‒789‍.

[17] Thackeray M M, David W I F, Bruce P G, et al‍. Lithium insertion into manganese spinels [J]‍. Materials Research Bulletin, 1983, 18(4): 461‒472‍.

[18] Padhi A K, Nanjundaswamy K S, Goodenough J B‍. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]‍. Journal of the Electrochemical Society, 1997, 144(4): 1188‒1194‍.

[19] Ohzuku T, Makimura Y‍. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries [J]‍. Chemistry Letters, 2001, 30(7): 642‒643‍.

[20] Whittingham M S‍. Electrical energy storage and intercalation chemistry [J]‍. Science, 1976, 192(4244): 1126‒1127‍.

[21] Yazami R, Touzain P‍. A reversible graphite-lithium negative electrode for electrochemical generators [J]‍. Journal of Power Sources, 1983, 9(3): 365‒371‍.

[22] Chen L C, Rabenau A, Weppner W‍. One-dimensional ionic conduction in solid Ag2Tl6I10 [J]‍. Applied Physics, 1978, 17(3): 233‒237‍.

[23] Chen L Q, Wang C Q, Wang L Z, et al‍. Lithium ionic conductivity of lisicon single crystals [J]‍. Acta Physica Sinica, 1980, 29(5): 661‍.

[24] Luo F, Chu G, Xia X X, et al‍. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries [J]‍. Nanoscale, 2015, 7(17): 7651‒7658‍.

[25] Wu J Y, Ling S G, Yang Q, et al‍. Forming solid electrolyte interphase in situ in an ionic conducting Li1‍.5Al0‍.5Ge1‍.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries [J]‍. Chinese Physics B, 2016, 25(7): 078204‍.

[26] Li H‍. A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]‍. Electrochemical and Solid-State Letters, 1999, 2(11): 547‍.

[27] Li Q, Yang Y, Yu X Q, et al‍. A 700 W⋅h⋅kg-1 rechargeable pouch type lithium battery [J]‍. Chinese Physics Letters, 2023, 40(4): 048201‍.

[28] Zhu Z Q, Hong M L, Guo D S, et al‍. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode [J]‍. Journal of the American Chemical Society, 2014, 136(47): 16461‒16464‍.

[29] Wang K, Ren Q Y, Gu Z Q, et al‍. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries [J]‍. Nature Communications, 2021, 12(1): 4410‍.

[30] Gao J X, Wu J, Han S Y, et al‍. A novel solid electrolyte formed by NASICON-type Li3Zr2Si2PO12 and poly (vinylidene fluoride) for solid state batteries [J]‍. Functional Materials Letters, 2021, 14(3): 2140001‍.

[31] Chi X W, Li M L, Di J C, et al‍. A highly stable and flexible zeolite electrolyte solid-state Li-air battery [J]‍. Nature, 2021, 592(7855): 551‒557‍.

[32] Zeng X X, Yin Y X, Li N W, et al‍. Reshaping lithium plating / stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries [J]‍. Journal of the American Chemical Society, 2016, 138(49): 15825‒15828‍.

[33] Zhou Q, Dong S M, Lv Z L, et al‍. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries [J]‍. Advanced Energy Materials, 2020, 10(6): 1903441‍.

[34] Hu L, Ren Y L, Wang C W, et al‍. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte [J]‍. Advanced Materials, 2024: 2401909‍.

[35] Wang Y T, Ju J W, Dong S M, et al‍. Facile design of sulfide-based all solid-state lithium metal battery: In situ polymerization within self-supported porous argyrodite skeleton [J]‍. Advanced Functional Materials, 2021, 31(28): 2101523‍.

Related Research