Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 3 doi: 10.15302/J-SSCAE-2024.03.005

Development Strategy of Continuous Silicon-Carbide-Fiber-Reinforced Silicon Carbide Ceramic Matrix Composites in the Field of Advanced Nuclear Energy

1. Shanghai Institute of Ceramics, Chiese Academy of Sciences, Shanghai 201899, China;
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
3. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
4. Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
5. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
6. Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233, China;
7. Nuclear Power Institute of China, Chengdu 610213, China

Received: 2024-05-17 Revised: 2024-06-16

Next Previous

Abstract

The development of advanced nuclear energy systems imposes stringent requirements on the service stability of nuclear materials under extreme environments characterized by multiple stressors. Continuous silicon-carbide-fiber-reinforced silicon carbide (SiCf/SiC) ceramic matrix composites possess advantages such as low density, excellent high-temperature mechanical properties,corrosion resistance, and irradiation tolerance. Furthermore, SiCf/SiC composites demonstrate a pseudo-ductile fracture behavior under external forces, positioning them as highly promising structural materials for advanced nuclear energy systems. This study systematically summarizes the fundamental research framework on nuclear-grade SiCf/SiC composites at the material, component,and service performance levels. It also analyzes the developmental trends in this field among traditional nuclear powerhouses such as the United States, France, and Japan, as well as in other emerging nuclear energy countries and China. Furthermore, the study identifies existing issues and challenges faced by China’s nuclear-grade SiCf/SiC sector in terms of raw materials, data accumulation,and patent standards, and proposes targeted measures and suggestions: (1) strengthening the research and development of material preparation technologies, (2) developing a new paradigm of research and development, (3) reinforcing the industry-universityresearch-application cooperation, and (4) enhancing international exchanges on the basis of maintaining independence. The aim of the study is to provide guidance and reference for the research directions and policy-making in China’s nuclear-grade SiCf/SiC sector.

References

[ 1 ] Seibert R L, Jolly B C, Balooch M, et al. Production and characterization of TRISO fuel particles with multilayered SiC [J]. Journal of Nuclear Materials, 2019, 515: 215‒226.

[ 2 ] 刘仕超, 李权, 黄永忠, 等. 中空六棱柱燃料元件热-力学性能研究 [J]. 核动力工程, 2022, 43(5): 133‒137.
Liu S C, Li Q, Huang Y Z, et al. Research on the thermal-mechanical performance of hollow hexagonal fuel element [J]. Nuclear Power Engineering, 2022, 43(5): 133‒137.

[ 3 ] Li L L, Xia Z H. Role of interfaces in mechanical properties of ceramic matrix composites [M]. Amsterdam: Elsevier, 2018: 355‒374.

[ 4 ] 王堋人, 苟燕子, 王浩. 第三代SiC纤维及其在核能领域的应用现状 [J]. 无机材料学报, 2020, 35(5): 525‒531.
Wang P R, Gou Y Z, Wang H. Third generation SiC fibers for nuclear applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525‒531.

[ 5 ] 关康. CVI法制备陶瓷基复合材料的微结构演变模拟 [D]. 西安: 西北工业大学(博士学位论文), 2014.
Guan K. Computational simulation of micro-structural evolution for Chemical Vapor Infiltration process of ceramic matrix composites [D]. Xi´an: Northwestern Polytechnical University (Doctoral dissertation), 2014.

[ 6 ] Ramanuj V, Sankaran R, Jolly B, et al. Chemical vapor infiltration of additively manufactured preforms: Pore-resolved simulations and experimental validation [J]. Journal of the American Ceramic Society, 2022, 105(4): 2421‒2441.

[ 7 ] 欧阳琴, 王艳菲, 徐剑, 等. 核用碳化硅纤维增强碳化硅复合材料研究进展 [J]. 无机材料学报, 2022, 37(8): 821‒840.
Ouyang Q, Wang Y F, Xu J, et al. Research progress of SiC fiber reinforced SiC composites for nuclear application [J]. Journal of Inorganic Materials, 2022, 37(8): 821‒840.

[ 8 ] 李鸣, 张瑞谦, 何宗倍, 等. 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究 [J]. 核动力工程, 2020, 41(S1): 169‒173.
Li M, Zhang R Q, He Z B, et al. Study on preparation technology of accident-resistant SiCf/SiC composite cladding tube CVI+ die-less NITE [J]. Nuclear Power Engineering, 2020, 41(S1): 169‒173.

[ 9 ] 张金, 刘荣军, 王衍飞, 等. 连续纤维增强陶瓷基复合材料新型界面相研究进展 [J]. 硅酸盐学报, 2021, 49(9): 1869‒1877.
Zhang J, Liu R J, Wang Y F, et al. Progress in research on new interphases of continuous fiber reinforced ceramic matrix composites [J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1869‒1877.

[10] Yang J S, Ye F, Cheng L F. In-situ formation of Ti3SiC2 interphase in SiCf/SiC composites by molten salt synthesis [J]. Journal of the European Ceramic Society, 2022, 42(4): 1197‒1207.

[11] Li S B, Ni N, Wu B B, et al. Ti3SiC2 interphase coating in SiCf/SiC composites: Effect of the coating fabrication atmosphere and temperature [J]. Journal of the European Ceramic Society, 2021, 41(12): 5850‒5862.

[12] Lee H G, Kim D, Park J Y, et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition [J]. International Journal of Applied Ceramic Technology, 2018, 15(3): 602‒610.

[13] Lee H G, Kim D, Jeong Y S, et al. Formation of Ti3SiC2 interphase of SiC fiber by electrophoretic deposition method [J]. Journal of the Korean Ceramic Society, 2016, 53(1): 87‒92.

[14] Seshadri A, Phillips B, Shirvan K. Impact of nuclear environment on hydrothermal corrosion and silica transport for CVD SiC in light water reactors [J]. Journal of Nuclear Materials, 2021, 556: 153155.

[15] Deng J G, Zhang W, Qiu X, et al. Effect of Au-ion irradiation on the morphology, microstructure and lead-bismuth eutectic corrosion behavior of refractory TiNbZrMoV high-entropy alloy coating [J]. Journal of Nuclear Materials, 2023, 584: 154592.

[16] 杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展 [J]. 航空材料学报, 2020, 40(5): 1‒12.
Yang T T, Zhang D T, Qiu H P, et al. Research progress on meso-structure and mechanical properties of SiCf/SiC textile composites [J]. Journal of Aeronautical Materials, 2020, 40(5): 1‒12.

[17] 吴宁, 韩美月, 焦亚男, 等. 高性能纤维的可织性研究进展 [J]. 航空制造技术, 2020, 63(15): 81‒89.
Wu N, Han M Y, Jiao Y N, et al. Research progress on weavability of high-performance fibers [J]. Aeronautical Manufacturing Technology, 2020, 63(15): 81‒89.

[18] Gavalda Diaz O, Axinte D A, Butler-Smith P, et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process [J]. Materials Science and Engineering: A, 2019, 743: 1‒11.

[19] Garcia Luna G, Axinte D, Novovic D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs) [J]. International Journal of Machine Tools and Manufacture, 2020, 157: 103580.

[20] Herrmann M, Lippmann W, Hurtado A. Y2O3-Al2O3-SiO2-based glass-ceramic fillers for the laser-supported joining of SiC [J]. Journal of the European Ceramic Society, 2014, 34(8): 1935‒1948.

[21] Wang H D, Feng Q, You X, et al. Microstructure and corrosion behavior of brazed joints of SiC/SiC composites and hastelloy N alloy using Cu-Ni alloy [J]. Journal of Inorganic Materials, 2022, 37(4): 452.

[22] Katoh Y, Snead L L, Henager C H Jr, et al. Current status and critical issues for development of SiC composites for fusion applications [J]. Journal of Nuclear Materials, 2007 (367‒370): 659‒671.

[23] Lu W, Wang J, Shen X Y, et al. Long-time corrosion behavior of ceramic candidates for tritium permeation barriers exposed to flowing lead lithium [J]. Corrosion Science, 2021, 184: 109380.

[24] Li B S, Sheng Y B, Liu H P, et al. Dissolution corrosion of 4H-SiC in lead-bismuth eutectic at 550 ℃ [J]. Materials and Corrosion, 2019, 70(10): 1878‒1883.

[25] Takahashi M, Kondo M. Corrosion resistance of ceramics SiC and Si3N4 in flowing lead-bismuth eutectic [J]. Progress in Nuclear Energy, 2011, 53(7): 1061‒1065.

[26] Tillack M S, Wang X R, Pulsifer J, et al. Fusion power core engineering for the ARIES-ST power plant [J]. Fusion Engineering and Design, 2003, 65(2): 215‒261.

[27] Ramírez A S P, Caso A, Giancarli L, et al. Tauro: A ceramic composite structural material self-cooled Pb—17Li breeder blanket concept [J]. Journal of Nuclear Materials, 1996, 233: 1257‒1261.

[28] 杨军, 张恩昊, 郭志恒, 等. 全球核能科技前沿综述 [J]. 科技导报, 2020, 38(20): 35‒49.
Yang J, Zhang E H, Guo Z H, et al. Recent progress of frontier nuclear energy science and technology [J]. Science & Technology Review, 2020, 38(20): 35‒49.

[29] Lee S P, Jin J O, Park J S, et al. High temperature characterization of reaction sintered SiC based materials [J]. Journal of Nuclear Materials, 2004, 329: 534‒538.

Related Research