Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 3 doi: 10.15302/J-SSCAE-2024.03.007

Quantifying the Praseodymium Recycling Supply in China and Its Improvement Strategy

1. School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China;

2. Institute of Natural Resources Strategic Development, China University of Geosciences (Beijing), Beijing 100083, China

Funding project:中国工程院咨询项目“我国战略性金属矿产的‘进口 ‒ 储备 ‒ 循环 ‒ 应急’战略研究”(2023-XY-21);国家自然科学基金项目(72274183);北京市社会科学基金项目(21DTR059) Received: 2023-11-29 Revised: 2024-01-25 Available online: 2024-06-03

Next Previous

Abstract

Praseodymium (Pr) is a critical mineral for the global clean energy industry. The global demand for Pr continues to increase. China possesses the largest proven reserves and highest production of Pr worldwide. However, a future Pr supply-demand gap still could occur in China. Developing a circular economy and promoting material recycling are considered solutions to the potential supply constraints. This study adopts a material flow analysis method and combines it with the recycling input rate (RIR) indicator to estimate the potential quantities of the Pr recycling supply in China from 2011 to 2020. The key findings are as follows: (1) From 2011 to 2020, 7.902 × 104 t Pr entered the anthropogenic cycle system in China from the supply side, of which 1.639 × 104 t Pr originated from recycling; (2) 1.369 × 104 t Pr was recycled from NdFeB magnet production scraps, with the RIR remaining stable at approximately 17%; (3) theoretically, 2.7 × 103 t Pr could be recycled from end-of-life (EoL) products, and the RIR of EoL products could increase from 0.04% to 5.17%. In view of the major challenges in realizing Pr recycling from EoL products, this study proposes improvement strategies to promote Pr recycling in China. They include improving the extended producer responsibility of China, progressively establishing consumer responsibility for relevant products, and guiding the industry to formulate recycling-related technical specifications and industry standards.

Figures

图1

图2

图3

图4

图5

图6

References

[ 1 ] Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies [J]. Environmental Science & Technology, 2012, 46(6): 3406‒3414.

[ 2 ] Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling [J]. Journal of Cleaner Production, 2014, 84: 348‒359.

[ 3 ] Liu C Y, Yan Q B, Zhang X W, et al. Efficient recovery of end-of-life NdFeB permanent magnets by selective leaching with deep eutectic solvents [J]. Environmental Science & Technology, 2020, 54(16): 10370‒10379.

[ 4 ] Rollat A, Guyonnet D, Planchon M, et al. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon [J]. Waste Management, 2016, 49: 427‒436.

[ 5 ] Dhammika B H M, Darcy J W, Apelian D, et al. Value analysis of neodymium content in shredder feed: Toward enabling the feasibility of rare earth magnet recycling [J]. Environmental Science & Technology, 2014, 48(12): 6553‒6560.

[ 6 ] Lin X, Luo Y, Peng H J, et al. Phase structure evolution and magnetic properties of La/Ce doped melt-spun NdFeB alloys [J]. Journal of Magnetism and Magnetic Materials, 2019, 490: 165454.

[ 7 ] Rademaker J H, Kleijn R, Yang Y X. Recycling as a strategy against rare earth element criticality: A systemic evaluation of the potential yield of NdFeB magnet recycling [J]. Environmental Science & Technology, 2013, 47(18): 10129‒10136.

[ 8 ] Constantinides S. The demand for rare earth materials in permanent magnets [C]. Niagara Falls: 51st Annual Conference of Metallurgists, 2012.

[ 9 ] Chu S. Critical materials strategy [R]. Washington DC: U.S. Department of Energy, 2010.

[10] European Commission. Critical raw materials resilience: Charting a path towards greater security and sustainability [R]. Brussels: European Commission, 2020.

[11] The United States Geological Survey. 2022 list of critical minerals [R]. Washington DC: The United States Geological Survey, 2022.

[12] The United States Geological Survey. Rare earths mineral commodity summaries 2022 [R]. Washington DC: The United States Geological Survey, 2022.

[13] The United States Geological Survey. Minerals yearbook 2019 (rare earths) [R]. Washington DC: The United States Geological Survey, 2022.

[14] Fan H R, Yang K F, Hu F F, et al. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis [J]. Geoscience Frontiers, 2016, 7(3): 335‒344.

[15] Smith M P, Campbell L S, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions [J]. Ore Geology Reviews, 2015, 64: 459‒476.

[16] 《中国稀土学会年鉴》编辑委员会‍. 中国稀土学会年鉴2019 [M]. 北京: 《中国稀土学会年鉴》编辑委员会, 2019.
The Editorial Board of Chinese Society of Rare Earths Yearbook. Chinese Society of Rare Earths yearbook 2019 [M]. Beijing: The Editorial Board of Chinese Society of Rare Earths Yearbook, 2019.

[17] The United States Geological Survey. Rare earths mineral commodity summaries 2024 [R]. Washington DC: The United States Geological Survey, 2024.

[18] Schulze R, Buchert M. Estimates of global REE recycling potentials from NdFeB magnet material [J]. Resources, Conservation and Recycling, 2016, 113: 12‒27.

[19] Eggert R, Wadia C, Anderson C, et al. Rare earths: Market disruption, innovation, and global supply chains [J]. Annual Review of Environment and Resources, 2016, 41(1): 199‒222.

[20] Alves Dias P, Bobba S, Carrara S, et al. The role of rare earth elements in wind energy and electric mobility: An analysis of future supply/demand balances [R]. Luxembourg: European Commission, 2020.

[21] Cudjoe D, Zhu B Z, Nketiah E, et al. The potential energy and environmental benefits of global recyclable resources [J]. The Science of the Total Environment, 2021, 798: 149258.

[22] Dutta T, Kim K H, Uchimiya M, et al. Global demand for rare earth resources and strategies for green mining [J]. Environmental Research, 2016, 150: 182‒190.

[23] Raghupathy L, Chaturvedi A. Secondary resources and recycling in developing economies [J]. The Science of the Total Environment, 2013, 461/462: 830‒834.

[24] Rostek L, Tercero Espinoza L A, Goldmann D, et al. A dynamic material flow analysis of the global anthropogenic zinc cycle: Providing a quantitative basis for circularity discussions [J]. Resources, Conservation and Recycling, 2022, 180: 106154.

[25] Du X Y, Graedel T E. Uncovering the global life cycles of the rare earth elements [J]. Scientific Reports, 2011, 1: 145.

[26] Du X Y, Graedel T E. Global in-use stocks of the rare earth elements: A first estimate [J]. Environmental Science & Technology, 2011, 45(9): 4096‒4101.

[27] Du X Y, Graedel T E. Uncovering the end uses of the rare earth elements [J]. The Science of the Total Environment, 2013, 461/462: 781‒784.

[28] Gao C X, Xu Y F, Geng Y, et al. Uncovering terbium metabolism in China: A dynamic material flow analysis [J]. Resources Policy, 2022, 79: 103017.

[29] Ge Z W, Geng Y, Wei W D, et al. Assessing samarium resource efficiency in China: A dynamic material flow analysis [J]. Resources Policy, 2022, 76: 102638

[30] Geng J X, Hao H, Sun X, et al. Static material flow analysis of neodymium in China [J]. Journal of Industrial Ecology, 2021, 25(1): 114‒124.

[31] Wang Q C, Chen W Q, Wang P, et al. Illustrating the supply chain of dysprosium in China through material flow analysis [J]. Resources, Conservation and Recycling, 2022, 184: 106417.

[32] Xiao S J, Geng Y, Pan H Y, et al. Uncovering the key features of dysprosium flows and stocks in China [J]. Environmental Science & Technology, 2022, 56(12): 8682‒8690.

[33] Yao T L, Geng Y, Sarkis J, et al. Dynamic neodymium stocks and flows analysis in China [J]. Resources, Conservation and Recycling, 2021, 174: 105752.

[34] Zheng B, Zhang Y W, Geng Y, et al. Investigating lanthanum flows and stocks in China: A dynamic material flow analysis [J]. Journal of Cleaner Production, 2022, 368: 133204.

[35] 李新宇, 汪鹏, 王路, 等‍. 中国稀土镨元素的供需失衡问题——基于镨的物质流分析 [J]. 科技导报, 2022, 40(21): 55‒65.
Li X Y, Wang P, Wang L, et al. On the imbalance between supply and demand of rare earth praseodymium in China: A praseodymium-based material flow analysis [J]. Science & Technology Review, 2022, 40(21): 55‒65.

[36] Brunner P H, Rechberger H. Handbook of material flow analysis [M]. Boca Raton: CRC Press, 2016.

[37] Graedel T E. Material flow analysis from origin to evolution [J]. Environmental Science & Technology, 2019, 53(21): 12188‒12196.

[38] 国家能源局‍. 2014年能源工作指导意见 [EB/OL]. (2014-01-20)[2023-08-22]. http://zfxxgk.nea.gov.cn/auto82/201401/t20140124_1756.htm.
National Energy Administration. Guidance on energy work in 2014 [EB/OL]. (2014-01-20)[2023-08-22]. http://zfxxgk.nea.gov.cn/auto82/201401/t20140124_1756.htm.

[39] 国务院‍. 节能与新能源汽车产业发展规划(2012―2020年) [EB/OL]. (2012-06-28)‍[2023-08-22]. http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm.
The State Council of the People´s Republic of China. Energy-saving and new energy vehicles industry development program (2012―2020) [EB/OL]. (2012-06-28)[2023-08-22]. http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm.

[40] Reck B K, Müller D B, Rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling [J]. Environmental Science & Technology, 2008, 42(9): 3394‒3400.

[41] Jordens A, Cheng Y P, Waters K E. A review of the beneficiation of rare earth element bearing minerals [J]. Minerals Engineering, 2013, 41: 97‒114.

[42] Peiro L T, Mendez G V, Ayres R U. Rare and critical metals as by-products and the implications for future supply [R]. Fontainebleau: INSTEAD, 2011.

[43] 国家市场监督管理总局, 国家标准化管理委员会‍. 钕铁硼生产加工回收料: GB/T 23588—2020 [S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration. Recylable manufacturing scraps of neodymium iron boron: GB/T 23588—2020 [S]. Beijing: Standards Press of China, 2020.

[44] 工业和信息化部‍. 稀土行业发展规划(2016—2020年) [EB/OL]. (2016-09-29)‍[2023-08-22]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_580b2a270ef648c7ac6b211cca170614.html.
Ministry of Industry and Information Technology of the People´s Republic of China. Rare earth industry development plan (2016—2020) [EB/OL]. (2016-09-29)‍[2023-08-22]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_580b2a270ef648c7ac6b211cca170614.html.

[45] Zhang Y B, Gu F Q, Su Z J, et al. Hydrometallurgical recovery of rare earth elements from NdFeB permanent magnet scrap: A review [J]. Metals, 2020, 10(6): 841.

[46] Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China´s rare earth boom [J]. Environmental Science & Technology, 2020, 54(22): 14686‒14693.

[47] Schuler D, Buchert M, Liu R, et al. Study on rare earths and their recycling [R]. Darmstadt: The Greens/EFA Group in the European Parliament, 2011.

[48] Yang Y X, Walton A, Sheridan R, et al. REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review [J]. Journal of Sustainable Metallurgy, 2017, 3: 122‒149.

[49] Ballinger B, Stringer M, Schmeda-Lopez D R, et al. The vulnerability of electric vehicle deployment to critical mineral supply [J]. Applied Energy, 2019, 255: 113844.

[50] Morimoto S, Ozaki K, Ozawa A, et al. Methodological study of evaluating the traceability of neodymium based on the global substance flow analysis and Monte Carlo simulation [J]. Resources Policy, 2019, 63: 101448.

[51] Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe [J]. Resources, Conservation and Recycling, 2019, 142: 143‒152.

[52] 陈占恒. 稀土永磁与轨道交通产业分析 [J]. 新材料产业, 2017 (8): 49‒50.
Chen Z H. Rare Earth permanent magnet and rail transportation industry analysis [J]. Advanced Materials Industry, 2017 (8): 49‒50.

[53] 刘思德‍. 世界稀土资源供给状况 [J]. 稀土信息, 2018 (1): 28‒30.
Liu S D. Supply situation of rare earth resources in the world [J]. Rare Earth Information, 2018 (1): 28‒30.

[54] Binnemans K, Jones P T, Van Acker K, et al. Rare-earth economics: The balance problem [J]. JOM, 2013, 65(7): 846‒848.

[55] Binnemans K, Jones P T. Rare earths and the balance problem [J]. Journal of Sustainable Metallurgy, 2015, 1(1): 29‒38.

[56] Hussain M, Zhao L Z, Akram R, et al. Magnetic properties and exchange interaction of rapidly quenched La or Ce substituted nanocrystalline NdFeB alloys with various compositions [J]. Journal of Magnetism and Magnetic Materials, 2018, 468: 141‒147.

[57] Hussain M, Zhao L Z, Zhang C, et al. Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys [J]. Physica B: Condensed Matter, 2016, 483: 69‒74.

[58] Yang L J, Bi M X, Jiang J J, et al. Effect of cerium on the corrosion behaviour of sintered (Nd, Ce)FeB magnet [J]. Journal of Magnetism and Magnetic Materials, 2017, 432: 181‒189.

[59] Du X Y, Graedel T E. Global rare earth In-use stocks in NdFeB permanent magnets [J]. Journal of Industrial Ecology, 2011, 15(6): 836‒843.

[60] Liu B W, Zhu N W, Li Y, et al. Efficient recovery of rare earth elements from discarded NdFeB magnets [J]. Process Safety and Environmental Protection, 2019, 124: 317‒325.

[61] Mao F L, Zhu N W, Zhu W, et al. Efficient recovery of rare earth elements from discarded NdFeB magnets by mechanical activation coupled with acid leaching [J]. Environmental Science and Pollution Research International, 2022, 29(17): 25532‒25543.

[62] Graedel T E, Allwood J, Birat J P, et al. Recycling rates of metals: A status report [R]. Nairobi: United Nations Environment Programme, 2011.

[63] Tercero Espinoza L A, Soulier M. Defining regional recycling indicators for metals [J]. Resources, Conservation and Recycling, 2018, 129: 120‒128.

[64] Van Loy S, Ali Recai Önal M, Binnemans K, et al. Recovery of valuable metals from NdFeB magnets by mechanochemically assisted ferric sulfate leaching [J]. Hydrometallurgy, 2020, 191: 105154.

[65] Mancheri N A, Sprecher B, Bailey G, et al. Effect of Chinese policies on rare earth supply chain resilience [J]. Resources, Conservation and Recycling, 2019, 142: 101‒112.

[66] 国家发展和改革委员会, 国家能源局‍. 关于促进新时代新能源高质量发展的实施方案 [EB/OL]. (2022-05-30)[2023-08-22]. http://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.
National Development and Reform Commission, National Energy Administration. Implementation plan to promote the high-quality development of new energy in the new era [EB/OL]. (2022-05-30)[2023-08-22]. http://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.

[67] Panayotova M, Panayotov V. Review of methods for the rare earth metals recycling [R]. Sofia: Annual of the University of Mining and Geology ST. IVAN RILSKI, 2012.

[68] Jowitt S M, Werner T T, Weng Z H, et al. Recycling of the rare earth elements [J]. Current Opinion in Green and Sustainable Chemistry, 2018, 13: 1‒7.

[69] Omodara L, Pitkäaho S, Turpeinen E M, et al. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review [J]. Journal of Cleaner Production, 2019, 236: 117573.

[70] Ministry of the Environment of Japan. The 4rd fundamental plan for establishing sound material cycle society [R]. Tokyo: Ministry of the Environment of Japan, 2018.

[71] 国家发展和改革委员会‍. "十四五"循环经济发展规划 [EB/OL]. (2021-07-01)‍[2023-08-22]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/P020210707324072693362.pdf.
National Development and Reform Commission. The 14th Five-Year Plan for circular economic development [EB/OL]. (2021-07-01)[2023-08-22]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/P020210707324072693362.pdf.

[72] Mochizuki Y, Tsubouchi N, Sugawara K. Selective recovery of rare earth elements from Dy containing NdFeB magnets by chlorination [J]. ACS Sustainable Chemistry & Engineering, 2013, 1(6): 655‒662.

[73] Blengini G A, El Latunussa C, Eynard U, et al. Study on the EU´s list of critical raw materials (2020): Critical raw materials factsheets [R]. Luxembourg: Publications Office of the European Union, 2020.

Related Research