Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 3 doi: 10.15302/J-SSCAE-2024.03.018

Supply of Key Metals for China’s New Energy Industries under the Carbon Peaking and Carbon Neutrality Goals

School of Environment, Tsinghua University, Beijing 100084, China

Received: 2024-04-28 Revised: 2024-05-29

Next Previous

Abstract

New energy industries, such as wind and photovoltaic (PV) power generation, are key to supporting the carbon peaking and carbon neutrality goals of China. The installed capacity of wind and PV power in China is the largest worldwide; therefore, it is necessary to secure the supply of key metal materials and conduct a more accurate management of emerging solid wastes. This study sets different development scenarios based on the historical data and planning objectives of wind and PV power industries of China. It assesses the demand, waste, and supply of key metals in China’s new energy industry using a life distribution model of wind and PV power generation equipment, and focuses on identifying the supply pressure of silver, copper, gallium, silver, steel, and neodymium,thereby providing a basic support for realizing the green and low-carbon development of the energy industry by 2060. In the baseline scenario, the decommissioned volume of the wind and PV power generation industries will reach 4.6 GW and 28.3 GW in 2035,respectively; and the total decommissioned volume (by mass) of both wind and PV power generation equipment will reach 2.54 ×106 t and 1.048 ×107 t in 2035 and 2060, respectively. In terms of the supply of key metals for the new energy industry during 2030‒2060,iron and steel have a low supply risk (≤5%), neodymium has a medium-high supply risk (25%‒50%), copper and silver have a high supply risk (50%‒100%), and the supply of gallium and indium are at an extremely high risk owing to their excessive peak demand.To improve the security and diversity of the supply chain of the new energy industry, it is necessary to ensure the sustainable supply of metal mineral resources and promote material recycling and efficient use. Furthermore, we propose the following recommendations:(1) treating decommissioned equipment for wind and PV power generation as waste electrical and electronic products, (2) incorporating wind and PV power generation enterprises into the Catalogue of Classified Management of Pollutant Discharge Permits for Stationary Pollution Sources, (3) improving the distributed new-energy solid-waste recycling system, and (4) developing recycling technologies for emerging solid wastes.

Figures

图1

图2

图3

图4

图5

图6

图7

图8

References

[ 1 ] 国家能源局发布2023年全国电力工业统计数据[EB/OL]. (2024-01-18)[2024-05-22]. https://www.gov.cn/lianbo/bumen/202401/content_6928723.htm.
National Energy Administration releases national power industry statistics for 2023 [EB/OL]. (2024-01-18)[2024-05-22]. https://www.gov.cn/lianbo/bumen/202401/content_6928723.htm.

[ 2 ] 项目综合报告编写组‍. 《中国长期低碳发展战略与转型路径研究》综合报告 [J]. 中国人口·资源与环境, 2020, 30(11):1‒25.
Project Synthesis Report Writing Team. Synthesis report on China´s long-term low-carbon development strategy and transition path [J]. China Population, Resources and Environment, 2020, 30(11):1‒25.

[ 3 ] Cong N, Song Y, Zhang M, et al. Life cycle assessment of carbon reduction potential of EoL wind turbine blades disposal scenarios in China [J]. Environmental Impact Assessment Review, 2023, 100: 107072.

[ 4 ] Huang W H, Shin W J, Wang L D, et al. Strategy and technology to recycle wafer-silicon solar modules [J]. Solar Energy, 2017, 144: 22‒31.

[ 5 ] 国家能源局关于印发《风电场改造升级和退役管理办法》的通知 [EB/OL]. [2023-04-15]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897055.htm.
National Energy Administration on the issuance of Measures for the management of wind farm upgrading and decommissioning [EB/OL]. [2023-04-15]. https://www.gov.cn/gongbao/2023/issue_10626/202308/content_6897055.htm.

[ 6 ] Tong Y D, Huynh T D X, Khong T D. Understanding the role of informal sector for sustainable development of municipal solid waste management system: A case study in Vietnam [J]. Waste Management, 2021, 124: 118‒127.

[ 7 ] 霍文敏, 陈甲斌, 聂宾汗‍. 美国关键性矿产战略与政策演进研究——对我国矿产资源保供的启示 [J]. 中国国土资源经济, 2023, 36(9): 40‒46.
Huo W M, Chen J B, Nie B H. Research on the evolution of critical mineral strategies and policies in the United States—Enlightenment on China´s mineral resources security [J]. Natural Resource Economics of China, 2023, 36(9): 40‒46.

[ 8 ] 刘刚, 刘立涛, 欧阳锌, 等‍. 绿色低碳转型背景下关键金属循环利用战略与对策 [J]. 中国科学院院刊, 2022, 37(11): 1566‒1576.
Liu G, Liu L T, Ouyang X, et al. Recycling of critical metals in green and low-carbon transition: Strategies and countermeasures [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1566‒1576.

[ 9 ] The European critical raw materials act: A quick summary on what it does and when it´s coming [EB/OL]. (2023-09-08)‍[2024-04-15]. https://riskandcompliance.freshfields.com/post/102in5d/the-european-critical-raw-materials-act-a-quick-summary-on-what-it-does-and-when.

[10] Fishman T, Graedel T E. Impact of the establishment of US offshore wind power on neodymium flows [J]. Nature Sustainability, 2019, 2: 332‒338.

[11] Majewski P, Florin N, Jit J, et al. End-of-life policy considerations for wind turbine blades [J]. Renewable and Sustainable Energy Reviews, 2022, 164: 112538.

[12] Yang J H, Zhang L X, Chang Y, et al. Understanding the material efficiency of the wind power sector in China: A spatial-temporal assessment [J]. Resources, Conservation and Recycling, 2020, 155: 104668.

[13] U.S. Department of Energy critical materials strategy [EB/OL]. (2010-12-01)[2024-04-15]. https://www.osti.gov/biblio/1000846.

[14] Weckend S, Wade A, Heath G. End-of-life management: Solar photovoltaic panels [R]. Paris: International Energy Agency, 2016.

[15] The global e-waste monitor—2017 [EB/OL]. [2024-04-15]. https://www.itu.int/en/ITU-D/Environment/Pages/Toolbox/Global-E-waste-Monitor-2017.aspx.

[16] Ren K P, Tang X, Höök M. Evaluating metal constraints for photovoltaics: Perspectives from China´s PV development [J]. Applied Energy, 2021, 282: 116148.

[17] Zhang L G, Chen Z Y, Yang C Y, et al. Global supply risk assessment of the metals used in clean energy technologies [J]. Journal of Cleaner Production, 2022, 331: 129602.

[18] Habib K, Wenzel H. Reviewing resource criticality assessment from a dynamic and technology specific perspective-using the case of direct-drive wind turbines [J]. Journal of Cleaner Production, 2016, 112: 3852‒3863.

[19] Shammugam S, Gervais E, Schlegl T, et al. Raw metal needs and supply risks for the development of wind energy in Germany until 2050 [J]. Journal of Cleaner Production, 2019, 221: 738‒752.

[20] Viebahn P, Soukup O, Sama di S, et al. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables [J]. Renewable and Sustainable Energy Reviews, 2015, 49: 655‒671.

[21] Zhou Y J, Li J W, Rechberger H, et al. Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050 [J]. Journal of Cleaner Production, 2020, 263: 121599.

[22] Yuan P F, Li D, Feng K S, et al. Assessing the supply risks of critical metals in China´s low-carbon energy transition [J]. Global Environmental Change, 2024, 86: 102825.

[23] Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe [J]. Resources, Conservation and Recycling, 2019, 142: 143‒152.

[24] Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies [J]. Journal of Cleaner Production, 2013, 59: 260‒273.

[25] Faulstich S, Berkhout V, Mayer J, et al. Modelling the failure behaviour of wind turbines [J]. Journal of Physics: Conference Series, 2016, 749: 012019.

[26] The global e-waste monitor 2020: Quantities, flows and the circular economy potential [EB/OL]. [2024-04-15]. https://www.itu.int/en/ITU-D/Environment/Documents/Toolbox/GEM_2020_def.pdf.

[27] Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications [J]. Energy, 2019, 180: 903‒917.

[28] Gómez M, Xu G C, Li Y, et al. Navigating the future: China´s photovoltaic roadmap challenges [J]. Science Bulletin, 2023, 68(21): 2491‒2494.

[29] Martínez E, Sanz F, Pellegrini S, et al. Life cycle assessment of a multi-megawatt wind turbine [J]. Renewable Energy, 2009, 34(3): 667‒673.

[30] Månberger A, Stenqvist B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development [J]. Energy Policy, 2018, 119: 226‒241.

[31] Li J S, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions [J]. One Earth, 2020, 3(1): 116‒125.

[32] Alves D P, Pavel C, Plazzotta B, et al. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system [M]. Brussels: Publications Office of the European Union, 2020.

[33] Allouhi A, Rehman S, Buker M S, et al. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D [J]. Journal of Cleaner Production, 2022, 362: 132339.

[34] Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployment of photovoltaics—Effects of innovation-driven roadmaps on material constraints until 2050 [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110589.

[35] International technology roadmap for photovoltaic (ITRPV): Results 2019 including maturity report 2020 [EB/OL]. [2024-04-15]. https://kosen.kr/file/down/FILE_000000000050993/1.

[36] Kavlak G, McNerney J, Jaffe R L, et al. Metal production requirements for rapid photovoltaics deployment [J]. Energy & Environmental Science, 2015, 8(6): 1651‒1659.

[37] Louwen A, van Sark W, Schropp R, et al. A cost roadmap for silicon heterojunction solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 147: 295‒314.

[38] 国务院关于印发2030年前碳达峰行动方案的通知方案 [EB/OL]. (2021-10-24)[2024-04-15]. https://www.gov.cn/gongbao/content/2021/content_5649731.htm.
State Council on the issuance of the program of action on carbon peaking by 2030 notice program [EB/OL]. (2021-10-24)[2024-04-15]. https://www.‍gov.‍cn/gongbao/content/2021/content_5649731.htm

[39] 中国宏观经济研究院能源研究所‍. 中国能源转型展望2021 [R]. 北京: 中国宏观经济研究院能源研究所, 2022.
Energy Research Institute of Chinese Academy of Macroeconomic Research. Outlook for China´s energy transition 2021 [R]. Beijing: Energy Research Institute of Chinese Academy of Macroeconomic Research, 2022.

[40] 赵靓‍. 1.5 MW、2 MW风电机组风轮直径发展趋势 [J]. 风能, 2014 (3): 34‒37.
Zhao L. Development trend of rotor diameter of 1.5 MW and 2 MW wind turbines [J]. Wind Energy, 2014 (3): 34‒37.

[41] 2018中国风电产业地图 [EB/OL]. [2024-04-15]. http://www.cwea.org.cn/industry_data_2018.html.
Map of China´s wind power industry in 2018 [EB/OL]. [2024-04-15]. http://www.cwea.org.cn/union_introduce.html.

[42] Global wind energy council [EB/OL]. [2024-04-15]. https://gwec.net/.

[43] 黄洁, 邓思杨, 马晓婷, 等‍. 全球铜产业发展现状与建议 [J]. 现代矿业, 2021, 37(6): 1‒5.
Huang J, Deng S Y, Ma X T, et al. Current situation of global copper industry development and suggestions [J]. Modern Mining, 2021, 37(6): 1‒5.

[44] 李鹏远, 周平, 唐金荣, 等‍. 中国铜矿资源供应风险识别与评价: 基于长周期历史数据分析预测法 [J]. 中国矿业, 2019, 28(7): 44‒51.
Li P Y, Zhou P, Tang J R, et al. Identification and evaluation of copper supply risk for China: Using method of long-term historical data analysis [J]. China Mining Magazine, 2019, 28(7): 44‒51.

[45] Minerals yearbook—Metals and minerals [EB/OL]. [2024-04-15]. https://www.usgs.gov/centers/national-minerals-information-center/minerals-yearbook-metals-and-minerals.

[46] 刘麦, 李伊兰, 张睿, 等‍. 全球镓资源现状及供需形势 [J]. 国土资源情报, 2020 (10): 50‒54, 26.
Liu M, Li Y L, Zhang R, et al. Analysis of supply and demand situation of global gallium resource [J]. Land and Resources Information, 2020 (10): 50‒54, 26.

[47] 霍文敏, 陈甲斌‍. 全球铟矿资源供需形势分析 [J]. 国土资源情报, 2020 (10): 34‒38.
Huo W M, Chen J B. Analysis of supply and demand situation of indium resources in the world [J]. Land and Resources Information, 2020 (10): 34‒38.

Related Research