Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 3 doi: 10.15302/J-SSCAE-2024.07.014

Development of Space Propulsion Technologies in China: Analysis and Suggestions

1. China Aerospace Science and Technology Corporation, Beijing 100048, China; 

2. Beijing Institute of Control Engineering, Beijing 100094, China; 

3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;

4. Shanghai Institute of Space Propulsion, Shanghai 201112, China; 

5. China Academy of Launch Vehicle Technology, Beijing 100076, China; 

6. Lanzhou Institute of Physics, CAST, Lanzhou 730000, China

Funding project:中国工程院咨询项目“空间推进技术发展研究”(2022-HY-04) Received: 2023-07-27 Revised: 2024-05-13 Available online: 2024-06-14

Next Previous

Abstract

After over 60 years of development, the space propulsion field in China has made tremendous progress in terms of technology system and product pedigree, and has supported major engineering applications including manned spaceflight, applied satellites, and deep space exploration. However, considering the requirements of future major aerospace missions in China, the technical level of current space propulsion systems is still insufficient, and it is urgent to plan directions for the innovative development and breakthroughs of the field. This study reviews the development status of the space propulsion systems from the aspects of electric, chemical, nuclear, and new-concept space propulsion, and analyzes the requirements of future applications. Specifically, high-performance, low-cost space propulsion systems are required to support the networking of low-Earth-orbit (LEO) small satellites; high-thrust, reusable low-temperature chemical propulsion technologies are required for new space-transportation systems; and multi-type, long-life space propulsion technologies are required for deep-space applications. The results demonstrate that the space propulsion field in China still faces multiple challenges. First, the system reliability and lifespan require further improvement. Second, the space propulsion systems of China still lag behind the advanced international level in terms of product maturity of some technologies. Third, this field typically has a high product cost. Fourth, there are few types of optional technologies, and the research progress of key technologies is lagging. Therefore, we propose the following suggestions: (1) optimizing technology options through top-level planning, (2) improving the development mechanism of the field by emphasizing basic research, and (3) clarifying and promoting scientific research and development in key technological directions, thereby achieving in-orbit applications of the propulsion systems for LEO small satellites, Earth–Moon space transfer, and deep space exploration (including manned spaceflight).

References

[ 1 ] 朱智春, 林庆国, 杭观荣, 等‍‍. 我国空间推进技术研究现状及发展 [J]‍. 上海航天(中英文), 2021, 38(3): 178‒188‍.
Zhu Z C, Lin Q G, Hang G R, et al‍. Research status and development of space propulsion technology in China [J]‍. Aerospace Shanghai (Chinese & English), 2021, 38(3): 178‒188‍.

[ 2 ] 李帅, 申志强, 侯宇葵, 等‍. 我国空间应用发展总体构想 [J]‍. 中国工程科学, 2023, 25(2): 67‒78‍.
Li S, Shen Z Q, Hou Y K, et al‍. Overall concept of space application development in China [J]‍. Strategic Study of CAE, 2023, 25(2): 67‒78‍.

[ 3 ] 赵文波, 李帅, 李博, 等‍. 新一代体系效能型对地观测体系发展战略研究 [J]‍. 中国工程科学, 2021, 23(6): 128‒138‍.
Zhao W B, Li S, Li B, et al‍. Development strategy of the new-generation effectiveness-oriented earth-observation system [J]‍. Strategic Study of CAE, 2021, 23(6): 128‒138‍.

[ 4 ] 杨广华, 王强, 陈国玖, 等‍. 美国"星链"低轨星座军事应用前景探析 [J]‍. 中国航天, 2022 (9): 60‒63‍.
Yang G H, Wang Q, Chen G J, et al‍. Future military application of the US starlink LEO constellation [J]‍. Aerospace China, 2022 (9): 60‒63‍.

[ 5 ] 包为民, 汪小卫, 董晓琳‍. 航班化航天运输系统对动力的发展需求与技术挑战 [J]‍. 火箭推进, 2021, 47(4): 1‒5‍.
Bao W M, Wang X W, Dong X L‍. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode [J]‍. Journal of Rocket Propulsion, 2021, 47(4): 1‒5‍.

[ 6 ] 高振良, 孙小凡, 刘育强, 等‍. 航天器在轨延寿服务发展现状与展望 [J]‍. 航天器工程, 2022, 31(4): 98‒107‍.
Gao Z L, Sun X F, Liu Y Q, et al‍. Development and prospect of spacecraft on-orbit life extension servicing [J]‍. Spacecraft Engineering, 2022, 31(4): 98‒107‍.

[ 7 ] 余水淋, 徐亚男, 张岩, 等‍. 大功率霍尔电推进研究进展与分析 [J]‍. 中国航天, 2022 (6): 47‒52‍.
Yu S L, Xu Y N, Zhang Y, et al‍. Research progress and analysis of high power hall electric propulsion [J]‍. Aerospace China, 2022 (6): 47‒52‍.

[ 8 ] 张泽, 薛翔, 王园丁, 等‍. 空间核动力推进技术研究展望 [J]‍. 火箭推进, 2021, 47(5): 1‒13‍.
Zhang Z, Xue X, Wang Y D, et al‍. Prospect of space nuclear power propulsion technology [J]‍. Journal of Rocket Propulsion, 2021, 47(5): 1‒13‍.

[ 9 ] 康小录, 张岩‍. 空间电推进技术应用现状与发展趋势 [J]‍. 上海航天, 2019, 36(6): 24‒34‍.
Kang X L, Zhang Y‍. Application status and development trend of space electric propulsion technology [J]‍. Aerospace Shanghai, 2019, 36(6): 24‒34‍.

[10] Krejci D, Reissner A, Schönherr T, et al‍. Informing FEEP thruster design utilizing the flight heritage from 167 thrusters in LEO and GEO [C]‍. Orlando: 2024 AIAA Science and Technology Forum and Exposition, 2024‍.

[11] 田立成, 王尚民, 高俊, 等‍. 微电推进系统研制及应用现状 [J]‍. 真空, 2021, 58(2): 66‒75‍.
Tian L C, Wang S M, Gao J, et al‍. Development and application of micro-electric propulsion system [J]‍. Vacuum, 2021, 58(2): 66‒75‍.

[12] Ding Y J, Li H, Wei L Q, et al, Overview of hall electric propulsion in China [J], IEEE Transactions on Plasma Science, 2018, 46(2): 263‒282‍.

[13] Lev D, Myers R M, Lemmer K M, et al‍. The technological and commercial expansion of electric propulsion [J]‍. Acta Astronautica, 2019, 159: 213‒227‍.

[14] 耿海, 李婧, 吴辰宸, 等‍. 空间电推进技术发展及应用展望 [J]‍. 气体物理, 2023, 8(1): 1‒16‍.
Geng H, Li J, Wu C C, et al‍. Development and application prospect of space electric propulsion technology [J]‍. Physics of Gases, 2023, 8(1): 1‒16‍.

[15] 杭观荣, 梁伟, 张岩, 等‍. 大功率等离子体电推进研究进展 [J]‍. 载人航天, 2016, 22(2): 175‒185‍.
Hang G R, Liang W, Zhang Y, et al‍. Research progress of high power plasma propulsion [J]‍. Manned Spaceflight, 2016, 22(2): 175‒185‍.

[16] 潘海林‍. 空间推进 [M]‍. 西安: 西北工业大学出版社, 2016‍.
Pan H L‍. Space propulsion [M]‍. Xi´an: Northwestern Ploytechnical University Press, 2016‍.

[17] 毛根旺‍. 航天器推进系统及其应用 [M]‍. 西安: 西北工业大学出版社, 2009‍.
Mao G W‍. Spacecraft propulsion systems and their applications [M]‍. Xi´an: Northwestern Ploytechnical University Press, 2009‍.

[18] 郑建朋, 崔晨, 陈六彪, 等‍. 低温推进剂贮箱绝热性能实验研究 [J]‍. 真空与低温, 2016, 22(1): 26‒29‍.
Zheng J P, Cui C, Chen L B, et al‍. Experimental study on insulation performance of cryogenic propellant tank [J]‍. Vacuum and Cryogenics, 2016, 22(1): 26‒29‍.

[19] 李永, 刘旭辉, 汪旭东, 等‍. 空间极小推力宽范围可调推进技术研究进展 [J]‍. 空间控制技术与应用, 2019, 45(6): 1‒12, 19‍.
Li Y, Liu X H, Wang X D, et al‍. Review and prospect on the large-range thrust throttling technology with extremely small thrust [J]‍. Aerospace Control and Application, 2019, 45(6): 1‒12, 19‍.

[20] 杭观荣, 洪鑫, 康小录‍. 国外空间推进技术现状和发展趋势 [J]‍. 火箭推进, 2013, 39(5): 7‒15‍.
Hang G R, Hong X, Kang X L‍. Current status and development trend of space propulsion technologies abroad [J]‍. Journal of Rocket Propulsion, 2013, 39(5): 7‒15‍.

[21] 田甜, 刘海印‍. 美国航空航天局机器人在轨加注任务简析 [J]‍. 中国航天, 2019 (4): 42‒47‍.
Tian T, Liu H Y‍. A brief analysis of NASA´ robotic refueling mission [J]‍. Aerospace China, 2019 (4): 42‒47‍.

[22] 张少华, 张晓屿, 贲勋, 等‍. 低温推进剂贮箱大面积冷屏热分析及成本优化 [J]‍. 低温工程, 2017 (1): 21‒25, 35‍.
Zhang S H, Zhang X Y, Ben X, et al‍. Optimization and thermal analysis of broad area cooler and system cost for cryogenic propellant tanks [J]‍. Cryogenics, 2017 (1): 21‒25, 35‍.

[23] 朱安文, 刘飞标, 杜辉, 等‍. 核动力深空探测器现状及发展研究 [J]‍. 深空探测学报, 2017, 4(5): 405‒416‍.
Zhu A W, Liu F B, Du H, et al‍. Current status and development for deep space nuclear power explorer [J]‍. Journal of Deep Space Exploration, 2017, 4(5): 405‒416‍.

[24] 李永, 周成, 吕征, 等‍. 大功率空间核电推进技术研究进展 [J]‍. 推进技术, 2020, 41(1): 12‒27‍.
Li Y, Zhou C, Lyu Z, et al‍. Progress on high power space nuclear electric propulsion technology development [J]‍. Journal of Propulsion Technology, 2020, 41(1): 12‒27‍.

[25] 文浩, 金栋平, 胡海岩‍. 绳系卫星收放控制地面实验研究 [J]‍. 振动工程学报, 2010, 23(1): 7‒11‍.
Wen H, Jin D P, Hu H Y‍. Ground-based experimental study on deployment and retrieval control of tethered satellite [J]‍. Journal of Vibration Engineering, 2010, 23(1): 7‒11‍.

[26] 李永‍. 特种空间帆和电动力绳系推进技术 [M]‍. 北京: 科学出版社, 2019‍.
Li Y‍. Advanced space sail and electrodynamic tether propulsion technology [M]‍. Beijing: Science Press, 2019‍.

[27] 汪小卫, 鲁宇, 刘丙利, 等‍. 天梯技术研究进展 [J]‍. 导弹与航天运载技术, 2015 (2): 41‒44‍.
Wang X W, Lu Y, Liu B L, et al‍. Progress of study on the space elevator technology [J]‍. Missiles and Space Vehicles, 2015 (2): 41‒44‍.

[28] 陈盼, 武志文, 刘向阳, 等‍. 一种用于临近空间飞行器的吸气式电推进技术 [J]‍. 宇航学报, 2016, 37(2): 203‒208‍.
Chen P, Wu Z W, Liu X Y, et al‍. An air-breathing electric thruster for near-space vehicle [J]‍. Journal of Astronautics, 2016, 37(2): 203‒208‍.

[29] Gotzig U, Wurdak M, Harmansa N‍. Development and coupled thruster/electrolyser tests of a water propulsion system [J]‍. Acta Astronautica, 2023, 202: 751‒759‍.

[30] Lemmer K‍. Propulsion for CubeSats [J]‍. Acta Astronautica, 2017, 134: 231‒243‍.

[31] Tagawa M, Yokota K, Nishiyama K, et al‍. Experimental study of air breathing ion engine using laser detonation beam source [J]‍. Journal of Propulsion and Power, 2013, 29(3): 501‒506‍.

[32] Yamagiwa Y, Fujii T, Nakashima K, et al‍. Space experimental results of STARS-C CubeSat to verify tether deployment in orbit [J]‍. Acta Astronautica, 2020, 177: 759‒770‍.

[33] 郭梦媞‍. 未来10年小卫星发展前瞻分析 [J]‍. 国际太空, 2021 (6): 20‒22‍.
Guo M T‍. Prospect analysis of small satellite development in the next 10 years [J]‍. Space International, 2021 (6): 20‒22‍.

[34] 王松, 撒文彬‍. 空间运输系统模块化方案设计 [J]‍. 兵器装备工程学报, 2016, 37(11): 151‒156‍.
Wang S, Sa W B‍. Design of modular program of space transportation system [J]‍. Journal of Ordnance Equipment Engineering, 2016, 37(11): 151‒156‍.

Related Research