Supplementary Information for

Biophysical Regulation of Cell Behavior—Crosstalk between Substrate Stiffness and Nanotopography

Yong Yang, Kai Wang, Xiaosong Gu, Kam W. Leong

Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA

Fig. S1. Relationship between stem cell differentiation and substrate stiffness (with references on each data point); each symbol represents one cell type. hMSC: human mesenchymal stem cell; rMSC: rat mesenchymal stem cell; ESC: embryonic stem cell; SMC: smooth muscle cell; NSC: neural stem cell; rNSC: rat neural stem cell.

References


* Corresponding authors.
E-mail addresses: yong.yang@mail.wvu.edu; kam.leong@columbia.edu

http://dx.doi.org/10.1016/J.ENG.2017.01.014
2095–8099/© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


Boontheekul T, Hill EE, Kong HJ, Mooney DJ. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 2007;13(7):1431–42.


Boontheekul T, Hill EE, Kong HJ, Mooney DJ. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 2007;13(7):1431–42.


